Genetics of Male Fertility

Part of the Methods in Molecular Biology book series (MIMB, volume 1154)


Early in embryogenesis, cells that are destined to become germ cells take on a different destiny from other cells in the embryo. The germ cells are not programmed to perform “vital” functions but to perpetuate the species through the transfer of genetic materials to the next generation. To fulfill their destiny, male germ cells undergo meiosis and extensive morphogenesis that transforms the round-shaped cells into freely motile sperm propelled by a beating flagellum to seek out their missing half. Apparently, extra genes and additional regulatory mechanisms are required to achieve all these unique features, and an estimated 11 % of genes are involved in fertility in Drosophila (Hackstein et al., Trends Genet 16(12):565–572, 2000). If comparative numbers of male fertility genes are needed in mammals, extra risks of male fertility problems are associated with disruptive mutations in those genes. Among human male infertility cases, approximately 22 % were classified as “idiopathic,” a term used to describe diseases of unknown causes, with idiopathic oligozoospermia being the most common semen abnormality (11.2 %) (Comhaire et al., Int J Androl (Suppl 7):1–53, 1987). “Idiopathic” is a widely used adjective that is used to reflect our lack of understanding of the genetics of male fertility. Fortunately, after more than two decades of phenotypic studies using knockout mice and identifying genes disrupted in spontaneous mutant mice, we have unveiled new and unexpected aspects of crucial gene functions for fertility. Other efforts to categorize genes involved in male fertility in mammals have suggested a total of 1,188 genes (Hermo et al., Microsc Res Tech 73(4):241–494, 2010). Although intracytoplasmic sperm injection (ICSI) can be used to bypass many fertilization obstacles to achieve fertilization with only a few extracted sperm, the widespread use of ICSI without proper knowledge for genetic testing and counseling could still potentially propagate pleiotropic gene mutations associated with male infertility and other genetic diseases (Alukal and Lamb, Urol Clin North Am 35(2):277–288, 2008). In this chapter, we give a brief account of major events during the development of male germ cells and focus on the functions of several crucial genes that have been studied in mutant mouse models and are potential causes of human male infertility.

Key words

Fertility Sperm Germ cells Male fertility Intracytoplasmic sperm injection 


  1. 1.
    Edson MA, Nagaraja AK, Matzuk MM (2009) The mammalian ovary from genesis to revelation. Endocr Rev 30(6):624–712PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Lawson KA et al (1999) Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 13(4):424–436PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Ying Y et al (2000) Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol Endocrinol 14(7):1053–1063PubMedCrossRefGoogle Scholar
  4. 4.
    Chang H, Matzuk MM (2001) Smad5 is required for mouse primordial germ cell development. Mech Dev 104(1–2):61–67PubMedCrossRefGoogle Scholar
  5. 5.
    Tremblay KD, Dunn NR, Robertson EJ (2001) Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development 128(18):3609–3621PubMedGoogle Scholar
  6. 6.
    Richardson BE, Lehmann R (2010) Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nat Rev Mol Cell Biol 11(1):37–49PubMedCrossRefGoogle Scholar
  7. 7.
    Manova K et al (1990) Gonadal expression of c-kit encoded at the W locus of the mouse. Development 110(4):1057–1069PubMedGoogle Scholar
  8. 8.
    Matsui Y, Zsebo KM, Hogan BL (1990) Embryonic expression of a haematopoietic growth factor encoded by the Sl locus and the ligand for c-kit. Nature 347(6294):667–669PubMedCrossRefGoogle Scholar
  9. 9.
    Gu Y et al (2009) Steel factor controls primordial germ cell survival and motility from the time of their specification in the allantois, and provides a continuous niche throughout their migration. Development 136(8):1295–1303PubMedCrossRefGoogle Scholar
  10. 10.
    Ohinata Y et al (2005) Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436(7048):207–213PubMedCrossRefGoogle Scholar
  11. 11.
    Kurimoto K et al (2008) Specification of the germ cell lineage in mice: a process orchestrated by the PR-domain proteins, Blimp1 and Prdm14. Cell Cycle 7(22):3514–3518PubMedCrossRefGoogle Scholar
  12. 12.
    Yamaji M et al (2008) Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nat Genet 40(8):1016–1022PubMedCrossRefGoogle Scholar
  13. 13.
    Sakurai T et al (1995) The ter mutation first causes primordial germ cell deficiency in ter/ter mouse embryos at 8 days of gestation. Dev Growth Differ 37(3):293–302CrossRefGoogle Scholar
  14. 14.
    Youngren KK et al (2005) The Ter mutation in the dead end gene causes germ cell loss and testicular germ cell tumours. Nature 435(7040):360–364PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Harley VR, Clarkson MJ, Argentaro A (2003) The molecular action and regulation of the testis-determining factors, SRY (sex-determining region on the Y chromosome) and SOX9 [SRY-related high-mobility group (HMG) box 9]. Endocr Rev 24(4):466–487PubMedCrossRefGoogle Scholar
  16. 16.
    Foster JW et al (1994) Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372(6506):525–530PubMedCrossRefGoogle Scholar
  17. 17.
    Wagner T et al (1994) Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 79(6):1111–1120PubMedCrossRefGoogle Scholar
  18. 18.
    Huang B et al (1999) Autosomal XX sex reversal caused by duplication of SOX9. Am J Med Genet 87(4):349–353PubMedCrossRefGoogle Scholar
  19. 19.
    Cox JJ et al (2011) A SOX9 duplication and familial 46, XX developmental testicular disorder. N Engl J Med 364(1):91–93PubMedCrossRefGoogle Scholar
  20. 20.
    Vetro A et al (2011) XX males SRY negative: a confirmed cause of infertility. J Med Genet 48(10):710–712PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Barsoum I, Yao HH (2006) The road to maleness: from testis to Wolffian duct. Trends Endocrinol Metab 17(6):223–228PubMedCrossRefGoogle Scholar
  22. 22.
    Capel B (2006) R-spondin1 tips the balance in sex determination. Nat Genet 38(11):1233–1234PubMedCrossRefGoogle Scholar
  23. 23.
    Collignon J et al (1996) A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2. Development 122(2):509–520PubMedGoogle Scholar
  24. 24.
    Sutton E et al (2011) Identification of SOX3 as an XX male sex reversal gene in mice and humans. J Clin Invest 121(1):328–341PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    d’Anglemont de Tassigny X et al (2007) Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc Natl Acad Sci U S A 104(25):10714–10719PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Lapatto R et al (2007) Kiss1−/− mice exhibit more variable hypogonadism than Gpr54−/− mice. Endocrinology 148(10):4927–4936PubMedCrossRefGoogle Scholar
  27. 27.
    Han SK et al (2005) Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci 25(49):11349–11356PubMedCrossRefGoogle Scholar
  28. 28.
    Pineda R et al (2010) Physiological roles of the kisspeptin/GPR54 system in the neuroendocrine control of reproduction. Prog Brain Res 181:55–77PubMedCrossRefGoogle Scholar
  29. 29.
    Nakagawa T et al (2010) Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment. Science 328(5974):62–67PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Mauduit C, Hamamah S, Benahmed M (1999) Stem cell factor/c-kit system in spermatogenesis. Hum Reprod Update 5(5):535–545PubMedCrossRefGoogle Scholar
  31. 31.
    Yoshinaga K et al (1991) Role of c-kit in mouse spermatogenesis: identification of spermatogonia as a specific site of c-kit expression and function. Development 113(2):689–699PubMedGoogle Scholar
  32. 32.
    Handel MA, Schimenti JC (2010) Genetics of mammalian meiosis: regulation, dynamics and impact on fertility. Nat Rev Genet 11(2):124–136PubMedGoogle Scholar
  33. 33.
    Yang F et al (2008) Meiotic failure in male mice lacking an X-linked factor. Genes Dev 22(5):682–691PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Yang F et al (2008) Mouse TEX15 is essential for DNA double-strand break repair and chromosomal synapsis during male meiosis. J Cell Biol 180(4):673–679PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Berthet C et al (2003) Cdk2 knockout mice are viable. Curr Biol 13(20):1775–1785PubMedCrossRefGoogle Scholar
  36. 36.
    Viera A et al (2009) CDK2 is required for proper homologous pairing, recombination and sex-body formation during male mouse meiosis. J Cell Sci 122(Pt 12):2149–2159PubMedCrossRefGoogle Scholar
  37. 37.
    Yang F et al (2006) Mouse SYCP2 is required for synaptonemal complex assembly and chromosomal synapsis during male meiosis. J Cell Biol 173(4):497–507PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Yuan L et al (2000) The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol Cell 5(1):73–83PubMedCrossRefGoogle Scholar
  39. 39.
    Hunt PA, Hassold TJ (2002) Sex matters in meiosis. Science 296(5576):2181–2183PubMedCrossRefGoogle Scholar
  40. 40.
    World Health Organization (1999) WHO Laboratory manual for the examination human semen and sperm-cervical mucus interaction. Cambridge University Press, CambridgeGoogle Scholar
  41. 41.
    Kierszenbaum AL, Tres LL (2004) The acrosome-acroplaxome-manchette complex and the shaping of the spermatid head. Arch Histol Cytol 67(4):271–284PubMedCrossRefGoogle Scholar
  42. 42.
    Kang-Decker N et al (2001) Lack of acrosome formation in Hrb-deficient mice. Science 294(5546):1531–1533PubMedCrossRefGoogle Scholar
  43. 43.
    Yao R et al (2002) Lack of acrosome formation in mice lacking a Golgi protein, GOPC. Proc Natl Acad Sci U S A 99(17):11211–11216PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Xu X et al (1999) Globozoospermia in mice lacking the casein kinase II alpha’ catalytic subunit. Nat Genet 23(1):118–121PubMedCrossRefGoogle Scholar
  45. 45.
    Lin YN et al (2007) Loss of zona pellucida binding proteins in the acrosomal matrix disrupts acrosome biogenesis and sperm morphogenesis. Mol Cell Biol 27(19):6794–6805PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Xiao N et al (2009) PICK1 deficiency causes male infertility in mice by disrupting acrosome formation. J Clin Invest 119(4):802–812PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Meistrich ML, Trostle-Weige PK, Russell LD (1990) Abnormal manchette development in spermatids of azh/azh mutant mice. Am J Anat 188(1):74–86PubMedCrossRefGoogle Scholar
  48. 48.
    Mendoza-Lujambio I et al (2002) The Hook1 gene is non-functional in the abnormal spermatozoon head shape (azh) mutant mouse. Hum Mol Genet 11(14):1647–1658PubMedCrossRefGoogle Scholar
  49. 49.
    Zhou J et al (2009) RIM-BP3 is a manchette-associated protein essential for spermiogenesis. Development 136(3):373–382PubMedCrossRefGoogle Scholar
  50. 50.
    Xiao N et al (2009) PICK1 deficiency causes male infertility in mice by disrupting acrosome formation. J Clin Invest 119(4):802PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Audouard C, Christians E (2011) Hsp90beta1 knockout targeted to male germline: a mouse model for globozoospermia. Fertil steril 95(4):1475–7 e1-4Google Scholar
  52. 52.
    Pazour GJ et al (2005) Proteomic analysis of a eukaryotic cilium. J Cell Biol 170(1):103–113PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Neesen J et al (2001) Disruption of an inner arm dynein heavy chain gene results in asthenozoospermia and reduced ciliary beat frequency. Hum Mol Genet 10(11):1117–1128PubMedCrossRefGoogle Scholar
  54. 54.
    Rashid S et al (2010) Disruption of the murine dynein light chain gene Tcte3-3 results in asthenozoospermia. Reproduction 139(1):99–111PubMedCrossRefGoogle Scholar
  55. 55.
    Tanaka H et al (2004) Mice deficient in the axonemal protein Tektin-t exhibit male infertility and immotile-cilium syndrome due to impaired inner arm dynein function. Mol Cell Biol 24(18):7958–7964PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Sapiro R et al (2002) Male infertility, impaired sperm motility, and hydrocephalus in mice deficient in sperm-associated antigen 6. Mol Cell Biol 22(17):6298–6305PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Lee L et al (2008) Primary ciliary dyskinesia in mice lacking the novel ciliary protein Pcdp1. Mol Cell Biol 28(3):949–957PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Schneider M et al (2009) Mitochondrial glutathione peroxidase 4 disruption causes male infertility. FASEB J 23(9):3233–3242PubMedCrossRefGoogle Scholar
  59. 59.
    Imai H et al (2009) Depletion of selenoprotein GPx4 in spermatocytes causes male infertility in mice. J Biol Chem 284(47):32522–32532PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Miki K et al (2004) Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc Natl Acad Sci U S A 101(47):16501–16506PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Odet F et al (2008) Expression of the gene for mouse lactate dehydrogenase C (Ldhc) is required for male fertility. Biol Reprod 79(1):26–34PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Danshina PV et al (2010) Phosphoglycerate kinase 2 (PGK2) is essential for sperm function and male fertility in mice. Biol Reprod 82(1):136–145PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Miki K et al (2002) Targeted disruption of the Akap4 gene causes defects in sperm flagellum and motility. Dev Biol 248(2):331–342PubMedCrossRefGoogle Scholar
  64. 64.
    Ishikawa H, Kubo A, Tsukita S (2005) Odf2-deficient mother centrioles lack distal/subdistal appendages and the ability to generate primary cilia. Nat Cell Biol 7(5):517–524PubMedCrossRefGoogle Scholar
  65. 65.
    Salmon NA, Reijo Pera RA, Xu EY (2006) A gene trap knockout of the abundant sperm tail protein, outer dense fiber 2, results in preimplantation lethality. Genesis 44(11):515–522PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Zheng H et al (2007) Lack of Spem1 causes aberrant cytoplasm removal, sperm deformation, and male infertility. Proc Natl Acad Sci U S A 104(16):6852–6857PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Bailey JL (2010) Factors regulating sperm capacitation. Syst Biol Reprod Med 56(5):334–348PubMedCrossRefGoogle Scholar
  68. 68.
    Visconti PE (2009) Understanding the molecular basis of sperm capacitation through kinase design. Proc Natl Acad Sci U S A 106(3):667–668PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Esposito G et al (2004) Mice deficient for soluble adenylyl cyclase are infertile because of a severe sperm-motility defect. Proc Natl Acad Sci U S A 101(9):2993–2998PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Hess KC et al (2005) The “soluble” adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Dev Cell 9(2):249–259PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Santi CM et al (2010) The SLO3 sperm-specific potassium channel plays a vital role in male fertility. FEBS Lett 584(5):1041–1046PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Zeng XH et al (2011) Deletion of the Slo3 gene abolishes alkalization-activated K+ current in mouse spermatozoa. Proc Natl Acad Sci U S A 108(14):5879–5884PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Carlson AE et al (2005) Identical phenotypes of CatSper1 and CatSper2 null sperm. J Biol Chem 280(37):32238–32244PubMedCrossRefGoogle Scholar
  74. 74.
    Carlson AE et al (2003) CatSper1 required for evoked Ca2+ entry and control of flagellar function in sperm. Proc Natl Acad Sci U S A 100(25):14864–14868PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Jin J et al (2007) Catsper3 and Catsper4 are essential for sperm hyperactivated motility and male fertility in the mouse. Biol Reprod 77(1):37–44PubMedCrossRefGoogle Scholar
  76. 76.
    Qi H et al (2007) All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility. Proc Natl Acad Sci U S A 104(4):1219–1223PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Ren D et al (2001) A sperm ion channel required for sperm motility and male fertility. Nature 413(6856):603–609PubMedCrossRefGoogle Scholar
  78. 78.
    Quill TA et al (2003) Hyperactivated sperm motility driven by CatSper2 is required for fertilization. Proc Natl Acad Sci U S A 100(25):14869–14874PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Liu J et al (2007) CatSperbeta, a novel transmembrane protein in the CatSper channel complex. J Biol Chem 282(26):18945–18952PubMedCrossRefGoogle Scholar
  80. 80.
    Wang H et al (2009) A novel, single, transmembrane protein CATSPERG is associated with CATSPER1 channel protein. Biol Reprod 81(3):539–544PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Chung JJ et al (2011) A novel gene required for male fertility and functional CATSPER channel formation in spermatozoa. Nat Commun 2:153PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Lishko PV, Botchkina IL, Kirichok Y (2011) Progesterone activates the principal Ca2+ channel of human sperm. Nature 471(7338):387–391PubMedCrossRefGoogle Scholar
  83. 83.
    Strunker T et al (2011) The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm. Nature 471(7338):382–386PubMedCrossRefGoogle Scholar
  84. 84.
    Taussig LM et al (1972) Fertility in males with cystic fibrosis. N Engl J Med 287(12):586–589PubMedCrossRefGoogle Scholar
  85. 85.
    Anguiano A et al (1992) Congenital bilateral absence of the vas deferens. A primarily genital form of cystic fibrosis. JAMA 267(13):1794–1797PubMedCrossRefGoogle Scholar
  86. 86.
    Claustres M (2005) Molecular pathology of the CFTR locus in male infertility. Reprod Biomed Online 10(1):14–41PubMedCrossRefGoogle Scholar
  87. 87.
    Reynaert I et al (2000) Morphological changes in the vas deferens and expression of the cystic fibrosis transmembrane conductance regulator (CFTR) in control, deltaF508 and knock-out CFTR mice during postnatal life. Mol Reprod Dev 55(2):125–135PubMedCrossRefGoogle Scholar
  88. 88.
    O’Hara L et al (2011) Androgen receptor expression in the caput epididymal epithelium is essential for development of the initial segment and epididymal spermatozoa transit. Endocrinology 152(2):718–729PubMedCrossRefGoogle Scholar
  89. 89.
    Krutskikh A et al (2011) Targeted inactivation of the androgen receptor gene in murine proximal epididymis causes epithelial hypotrophy and obstructive azoospermia. Endocrinology 152(2):689–696PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Aston KI, Carrell DT (2009) Genome-wide study of single-nucleotide polymorphisms associated with azoospermia and severe oligozoospermia. J Androl 30(6):711–725PubMedCrossRefGoogle Scholar
  91. 91.
    Aston KI et al (2010) Evaluation of 172 candidate polymorphisms for association with oligozoospermia or azoospermia in a large cohort of men of European descent. Hum Reprod 25(6):1383–1397PubMedCrossRefGoogle Scholar
  92. 92.
    Summerer D (2009) Enabling technologies of genomic-scale sequence enrichment for targeted high-throughput sequencing. Genomics 94(6):363–368PubMedCrossRefGoogle Scholar
  93. 93.
    Maxmen A (2011) Exome sequencing deciphers rare diseases. Cell 144(5):635–637PubMedCrossRefGoogle Scholar
  94. 94.
    Meyerson M, Gabriel S, Getz G (2010) Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 11(10):685–696PubMedCrossRefGoogle Scholar
  95. 95.
    Metzker ML (2010) Sequencing technologies- the next generation. Nat Rev Genet 11(1):31–46PubMedCrossRefGoogle Scholar
  96. 96.
    Ostermeier GC et al (2002) Spermatozoal RNA profiles of normal fertile men. Lancet 360(9335):772–777PubMedCrossRefGoogle Scholar
  97. 97.
    Yatsenko AN et al (2006) Non-invasive genetic diagnosis of male infertility using spermatozoal RNA: KLHL10 mutations in oligozoospermic patients impair homodimerization. Hum Mol Genet 15(23):3411–3419PubMedCrossRefGoogle Scholar
  98. 98.
    Matzuk MM, Lamb DJ (2008) The biology of infertility: research advances and clinical challenges. Nat Med 14(11):1197–1213Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
  2. 2.Department of Pathology & ImmunologyBaylor College of MedicineHoustonUSA
  3. 3.Department Molecular and Cellular BiologyBaylor College of MedicineHoustonUSA
  4. 4.Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUSA

Personalised recommendations