Skip to main content

Embryo Culture and Selection: Morphological Criteria

  • Protocol
  • First Online:
Human Fertility

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1154))

Abstract

In this chapter, we have outlined the various morphological criteria for selection of the best embryo at each important milestone encountered in the progress from the oocyte to the blastocyst. As Gerris et al. stated, a combination of one, two, or even three selection points should lead to a more accurate selection of the best embryo, as no one criterion is better than the other. An embryo that fails to meet the entire set of selection criteria must be avoided as culture cannot correct an impaired embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Royen E et al (1999) Characterization of a top quality embryo, a step towards single-embryo transfer. Hum Reprod 14:2345–2349

    Article  PubMed  Google Scholar 

  2. Mendoza C et al (2002) Follicular fluid markers of oocyte developmental potential. Hum Reprod 17:1017–1022

    Article  PubMed  CAS  Google Scholar 

  3. Gardner D et al (2003) Assessment of embryo viability: the ability to select a single embryo for transfer – a review. Placenta 24:S5–S12

    Article  PubMed  Google Scholar 

  4. Ebner T et al (2003) Selection based on morphological assessment of oocytes and embryos at different stages of preimplantation development: a review. Hum Reprod 9:251–262

    Article  CAS  Google Scholar 

  5. Cummins J et al (1986) A formula for scoring human embryo growth rates in vitro fertilization: its value in predicting pregnancy and in comparison with visual estimates of embryo quality. J In Vitro Fert Embryo Transf 3(5):284–295

    Article  PubMed  CAS  Google Scholar 

  6. Sakkas D et al (2005) Noninvasive methods to assess embryo quality. Curr Opin Obstet Gynecol 17:283–288

    Article  PubMed  Google Scholar 

  7. Johnson M et al (2000) Egg timers: how is developmental time measured in the early vertebrate embryo? BioEssays 22:57–63

    Article  PubMed  CAS  Google Scholar 

  8. Behr B et al (2011) Cumulative morphological assessment of embryo quality. In: Agarwal A, Varghese A, Peter Nagy Z (eds) Practical manual of in vitro fertilization: advanced methods and novel devices. Humana, New York, NY

    Google Scholar 

  9. Vlaisavljevic V et al (2001) Is there any benefit from the culture of a single oocyte to a blastocyst-stage embryo in unstimulated cycles. Hum Reprod 16:3279–2383

    Google Scholar 

  10. Scott L (2003) The biological basis of non-invasive strategies for selection of human oocytes and embryos. Hum Reprod 9(3):237–249

    Article  Google Scholar 

  11. Wang Q et al (2007) Evaluation of oocyte quality: morphological, cellular and molecular predictors. Reprod Fertil Dev 2007(19):1–12

    Article  Google Scholar 

  12. Sirard M et al (2006) Contribution of the oocyte to embryo quality. Theriogenology 65:126–136

    Article  PubMed  Google Scholar 

  13. Sirard M et al (1989) Timing of nuclear progression and protein synthesis necessary for meiotic maturation of bovine oocytes. Biol Reprod 40:1257–1263

    Article  PubMed  CAS  Google Scholar 

  14. Kastrop P et al (1991) Protein synthesis and phosphorylation patterns of bovine oocytes maturing in vivo. Mol Reprod Dev 29:271–275

    Article  PubMed  CAS  Google Scholar 

  15. Hunter A et al (1987) Stage-dependent effects of inhibiting ribonucleic acids and protein synthesis on meiotic maturation of bovine oocytes In vitro. J Dairy Sci 70:1646–1651

    Article  PubMed  CAS  Google Scholar 

  16. Barnes F et al (1991) Embryonic transcription in in vitro cultured bovine embryos. Mol Reprod Dev 29:117–123

    Article  PubMed  CAS  Google Scholar 

  17. De Sousa P et al (1998) Temporal patterns of embryonic gene expression and their dependence on oogenetic factors. Theriogenology 49:115–128

    Article  PubMed  Google Scholar 

  18. Sun Q et al (2001) Translocation of active mitochondria during pig oocyte maturation, fertilization and early embryo development in vitro. Reproduction 122:155–163

    Article  PubMed  CAS  Google Scholar 

  19. Coticchio G et al (2004) What criteria for the definition of oocyte quality? Ann N Y Acad Sci 1034:132–144

    Article  PubMed  Google Scholar 

  20. Combelles C et al (2005) Assessment and optimization of oocyte quality during assisted reproductive technology treatment. Semin Reprod Med 23:277–284

    Article  PubMed  Google Scholar 

  21. Hassan-Ali H et al (1998) Perivitelline space granularity: a sign of human menopausal gonadotrophin overdose in intracytoplasmic sperm injection. Hum Reprod 13:3425–3430

    Article  PubMed  CAS  Google Scholar 

  22. Loutradis D et al (1999) Oocyte morphology correlates with embryo quality and pregnancy rate after intracytoplasmic sperm injection. Fertil Steril 72:240–244

    Article  PubMed  CAS  Google Scholar 

  23. Kahraman S et al (2000) Relationship between granular cytoplasm of oocytes and pregnancy outcome following intracytoplasmic sperm injection. Hum Reprod 15:2390–2393

    Article  PubMed  CAS  Google Scholar 

  24. Eichenlaub-Ritter U et al (1995) Recurrent failure in polar body formation and premature chromosome condensation in oocytes from a human patient: indicators of asynchrony in nuclear and cytoplasmic maturation. Hum Reprod 9:2343–2349

    Article  Google Scholar 

  25. Ebner T et al (2000) Prognostic value of first polar body morphology on fertilization rate and embryo quality in intracytoplasmic sperm injection. Hum Reprod 15:427–430

    Article  PubMed  CAS  Google Scholar 

  26. Chui D et al (1997) Follicular vascularity – the predictive value of transvaginal power Doppler ultrasonography in an in-vitro fertilization programme: a preliminary study. Hum Reprod 12:191–196

    Article  PubMed  CAS  Google Scholar 

  27. Van Blerkom J et al (1997) The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: association with vascular endothelial growth factor levels and perifollicular blood flow characteristics. Hum Reprod 12:1047–1055

    Article  PubMed  Google Scholar 

  28. Edwards R et al (2000) The role of embryonic polarities in preimplantation growth and implantation of mammalian embryos. Hum Reprod 15(Suppl 6):1–8

    Article  Google Scholar 

  29. Veeck L (1990) The morphological assessment of human oocytes and early concepti. In: Keel BA, Webster BW (eds) Handbook of the laboratory diagnosis and treatment of infertility. CRC, Boca Raton, pp 353–369

    Google Scholar 

  30. Laufer N et al (1984) Asynchrony between human cumulus-corona cell complex and oocyte maturation after human menopausal gonadotropin treatment for in vitro fertilization. Fertil Steril 42:366–372

    PubMed  CAS  Google Scholar 

  31. Blondin P et al (1995) Oocyte and follicular morphology as determining characteristics for developmental competence in bovine oocytes. Mol Reprod Dev 41(1):54–62

    Article  PubMed  CAS  Google Scholar 

  32. Warriach HM et al (2004) Thickness of cumulus cell layer is a significant factor in meiotic competence of buffalo oocytes. J Vet Sci 5(3):247–251

    PubMed  Google Scholar 

  33. Nagano M et al (2006) ATP content and maturational/developmental ability of bovine oocytes with various cytoplasmic morphologies. Zygote 14(4):299–304

    Article  PubMed  CAS  Google Scholar 

  34. Serhal P et al (1997) Oocyte morphology predicts outcome of intracytoplasmic sperm injection. Hum Reprod 12:1267–1270

    Article  PubMed  CAS  Google Scholar 

  35. Balaban B et al (1998) Oocyte morphology does not affect fertilization rate, embryo quality and implantation rate after intracytoplasmic sperm injection. Hum Reprod 13(12):3431–3433

    Article  PubMed  CAS  Google Scholar 

  36. Ciotti P et al (2004) First polar body morphology before ICSI is not related to embryo quality or pregnancy rate. Hum Reprod 19(10):2334–2339

    Article  PubMed  CAS  Google Scholar 

  37. Gabrielsen A et al (2001) The impact of the zona pellucida thickness variation of human embryos on pregnancy outcome in relation to suboptimal embryo development. A prospective randomized controlled study. Hum Reprod 16(10):2166–2170

    Article  PubMed  CAS  Google Scholar 

  38. De Sutter P et al (1996) Oocyte morphology does not correlate with fertilization rate and embryo quality after intracytoplasmic sperm injection. Hum Reprod 11:595–597

    Article  PubMed  Google Scholar 

  39. Wang W et al (2001) Developmental ability of human oocytes with or without birefringent spindles imaged by Polscope before insemination. Hum Reprod 16:1464–1468

    Article  PubMed  CAS  Google Scholar 

  40. Moon J et al (2003) Visualization of the metaphase II meiotic spindle in living human oocytes using the Polscope enables the prediction of embryonic developmental competence after ICSI. Hum Reprod 18:817–820

    Article  PubMed  CAS  Google Scholar 

  41. Rienzi L (2005) Significance of morphological attributes of the early embryo. Reprod Biomed Online 10:669–681

    Article  PubMed  Google Scholar 

  42. De Vos A et al (1999) Invitro matured metaphase-I oocytes have a lower fertilization rate but similar embryo quality as mature metaphase-II oocytes after intracytoplasmic sperm injection. Hum Reprod 14:1859–1863

    Article  PubMed  Google Scholar 

  43. Balakier H et al (2002) Morphological and cytogenetic analysis of human giant oocytes and giant embryos. Hum Reprod 17:2394–2401

    Article  PubMed  Google Scholar 

  44. Rosenbusch B et al (2002) Cytogenetic analysis of giant oocytes and zygotes to assess their relevance for the development of digynic triploidy. Hum Reprod 17:2388–2393

    Article  PubMed  CAS  Google Scholar 

  45. Xia P (1997) Intracytoplasmic sperm injection: correlation of oocyte grade based on polar body, perivitelline space and cytoplasmic inclusions with fertilization rate and embryo quality. Hum Reprod 12:1750–1755

    Article  PubMed  CAS  Google Scholar 

  46. Hammah S (2005) Oocyte and embryo quality: is their morphology a good criterion? J Gynecol Obstet Biol Reprod 34(7):5S38–5S41

    Google Scholar 

  47. Plachot M et al (1988) Chromosome analysis of ovocytes and human embryos collected after fertilization in vitro. A model of natural selection against aneuploidy. Rev Fr Gynecol Obstet 83(10):613–617

    PubMed  CAS  Google Scholar 

  48. Van Blerkom J et al (1992) Oocyte dysmorphism and aneuploidy in meiotically – mature human oocytes after ovarian stimulation. Hum Reprod 7:379–390

    PubMed  Google Scholar 

  49. Alikani M et al (1995) Intracytoplasmic sperm injection in dysmorphic human oocytes. Zygote 3:283–288

    Article  PubMed  CAS  Google Scholar 

  50. Mikkelson A et al (2001) Morphology of in-vitro matured oocytes: impact on fertility potential and embryo quality. Hum Reprod 16:1714–1718

    Article  Google Scholar 

  51. Ebner T et al (1999) Elective embryo transfer selected on the basis of first polar body morphology is associated with increased rates of implantation and pregnancy. Fertil Steril 72:599–603

    Article  PubMed  CAS  Google Scholar 

  52. Navarro P et al (2009) Relationship between first polar body morphology before intracytoplasmic sperm injection and fertilization rate, cleavage rate, and embryo quality. Int J Gynaecol Obstet 104(3):226–229

    Article  PubMed  Google Scholar 

  53. Lasiene K et al (2009) Morphological criteria of assessment of oocyte quality. Medicina (Kaunas) 45(7):505–515

    Google Scholar 

  54. Bertrand E et al (1995) Does zona pellucida thickness influence the fertilization rate? Hum Reprod 10(5):1189–1193

    PubMed  CAS  Google Scholar 

  55. Shen Y et al (2006) Light retardance by human oocyte spindle is positively related to pronuclear score after ICSI. Reprod Biomed Online 12(6):737–751

    Article  PubMed  CAS  Google Scholar 

  56. Fang C et al (2007) Visualization of meiotic spindle and subsequent embryonic development in in vitro and in vivo matured human oocytes. J Assist Reprod Genet 24(11):495–499

    Article  Google Scholar 

  57. Battaglia D et al (1996) Influence of maternal age on meiotic spindle in oocytes from naturally cycling women. Hum Reprod 11:2217–2222

    Article  PubMed  CAS  Google Scholar 

  58. Rienze L et al (2008) Significance of metaphase II human oocyte morphology on ICSI outcome. Fertil Steril 90(5):1692–1700

    Article  Google Scholar 

  59. James A (2007) Human pronuclei as a mode of predicting viability. In: Elder K, Cohen J (eds) Human preimplantation embryo selection. Informa UK Ltd, London, pp 31–40

    Chapter  Google Scholar 

  60. Van Blerkom J (1990) Occurrence and developmental consequences of abberant cellular organization in meiotically mature oocytes after exogeneous ovarian hyperstimulation. J Electron Microsc Tech 16:324–346

    Article  PubMed  Google Scholar 

  61. Tesarik J et al (1999) The probability of abnormal preimplantation development can be predicted by a single static observation on pronuclear stage morphology. Hum Reprod 14:1318–1323

    Article  PubMed  CAS  Google Scholar 

  62. Scott L et al (2000) The morphology of human pronuclear embryos is positively related to blastocyst development and implantation. Hum Reprod 15:2394–2403

    Article  PubMed  CAS  Google Scholar 

  63. Payne D et al (1997) Preliminary observations on polar body extrusion and pronuclear formation in human oocytes using time-lapse video cinematography. Hum Reprod 12:532–541

    Article  PubMed  CAS  Google Scholar 

  64. Manor D et al (1996) Undocumented embryos: do not trash them, FISH them. Hum Reprod 11:2502–2506

    Article  PubMed  CAS  Google Scholar 

  65. Munne A et al (1998) Chromosome abnormalities in human embryos. Hum Reprod Update 4:842–855

    Article  PubMed  CAS  Google Scholar 

  66. Sadowy S et al (1998) Impaired development of zygotes with uneven pronuclear size. Zygote 63:137–141

    Article  Google Scholar 

  67. Wright G et al (1990) Observations on the morphology of pronuclei and nucleoli in human zygotes and implications for cryopreservation. Hum Reprod 5:109–115

    PubMed  CAS  Google Scholar 

  68. Schatten G (1994) The centrosome and its mode of inheritance: the reduction of the centrosome during gametogenesis and its restoration during fertilization. Dev Biol 165:299–335

    Article  PubMed  CAS  Google Scholar 

  69. Asch R et al (1995) The stages at which human fertilization arrests microtubule and chromosomal configurations in inseminated oocytes which failed to complete fertilization and development in humans. Hum Reprod 10:1897–1906

    PubMed  CAS  Google Scholar 

  70. Edwards R et al (1997) Oocyte polarity and cell determination in early mammalian embryos. Mol Hum Reprod 3:863–905

    Article  PubMed  CAS  Google Scholar 

  71. Garello C et al (1999) Pronuclear orientation, polar body placement, and embryo quality after intracytoplasmic sperm injection and in-vitro fertilization: further evidence for polarity in human oocytes? Hum Reprod 14:2588–2595

    Article  PubMed  CAS  Google Scholar 

  72. Tesarik J et al (1989) Development of human male pronucleus: ultrastructure and timing. Gamete Res 24:135–149

    Article  PubMed  CAS  Google Scholar 

  73. Scott L et al (1998) The successful use of pronuclear embryo transfers the day following oocyte retrieval. Hum Reprod 13:1003–1013

    Article  PubMed  CAS  Google Scholar 

  74. Scott L (2003) Pronuclear scoring as a predictor of embryo development. Reprod Biomed Online 6:57–60

    Article  Google Scholar 

  75. Scott L et al (2007) Morphological parameters of early cleavage – stage embryos that correlate with fetal development and delivery: prospective and applied data for increased pregnancy rates. Hum Reprod 22(1):230–240

    Article  PubMed  CAS  Google Scholar 

  76. Montag M et al (2001) Evaluation of pronuclear morphology as the only selection criterion for further embryo culture and transfer: results of a prospective multicentre study. Hum Reprod 16:2384–2389

    PubMed  CAS  Google Scholar 

  77. Ludwig M et al (2000) Clinical use of a pronuclear stage score following intracytoplasmic sperm injection: impact on pregnancy rates under the conditions of the German embryo protection law. Hum Reprod 15:325–329

    Article  PubMed  CAS  Google Scholar 

  78. Zollner U et al (2002) The use of a detailed zygote score after IVF/ICSI to obtain good quality blastocysts: the German experience. Hum Reprod 17:1327–1333

    Article  PubMed  CAS  Google Scholar 

  79. Senn A et al (2006) Morphological scoring of human pronuclear zygotes for prediction of pregnancy outcome. Hum Reprod 21:234–239

    Article  PubMed  Google Scholar 

  80. Kaharman S et al (2002) Pronuclear morphology scoring and chromosomal status of embryos in severe male infertility. Hum Reprod 17:3193–3200

    Article  Google Scholar 

  81. Gianaroli L et al (2003) Pronuclear morphology scoring and chromosomal status of embryos in severe male infertility. Fertil Steril 80:341–349

    Article  PubMed  Google Scholar 

  82. Bavister B et al (2000) Mitochondrial distribution and function in oocytes and early embryos. Hum Reprod 15:189–198

    Article  PubMed  Google Scholar 

  83. Ceyhan S et al (2009) Biennial review of infertility. Humana, New York, pp 143–184

    Book  Google Scholar 

  84. Salumets A et al (2001) The predictive value of pronuclear morphology of zygotes in the assessment of human embryo quality. Hum Reprod 16:2177–2181

    Article  PubMed  CAS  Google Scholar 

  85. Nagy Z et al (1998) Timing of oocyte activation, pronucleus formation, and cleavage in humans after intracytoplasmic sperm injection (ICSI) with testicular spermatozoa and after ICSI or invitro fertilization on sibling oocytes with ejaculated spermatozoa. Hum Reprod 13:1606–1612

    Article  PubMed  CAS  Google Scholar 

  86. Balaban B et al (2001) The effects of pronuclear morphology on embryo quality parameters and blastocyst transfer outcome. Hum Reprod 16:2357–2361

    Article  PubMed  CAS  Google Scholar 

  87. Ludwig M et al (2000) Experience with the elective transfer of two embryos under the conditions of the German embryo protection law: results of a retrospective data analysis of 2573 transfer cycles. Hum Reprod 15:319–324

    Article  PubMed  CAS  Google Scholar 

  88. Tesarik J et al (2000) Embryos with high implantation potential after intracytoplasmic sperm injection can be recognized by a simple, non-invasive examination of pronuclear morphology. Hum Reprod 15:1396–1399

    Article  PubMed  CAS  Google Scholar 

  89. Tesarik J et al (2002) Paternal effects acting during the first cell cycle of human preimplantation development after ICSI. Hum Reprod 17:184–187

    Article  PubMed  Google Scholar 

  90. Wittemer C et al (2000) Zygote evaluation: an efficient tool for embryo selection. Hum Reprod 15:2591–2597

    Article  PubMed  CAS  Google Scholar 

  91. Scott L (2002) Embryologic strategies for overcoming recurrent ART treatment failure. Hum Fertil 5:206–214

    Article  Google Scholar 

  92. Balaban B et al (2004) Pronuclear morphology predicts embryo development and chromosome constitution. Reprod Biomed Online 8(6):695–700

    Article  PubMed  Google Scholar 

  93. Gamiz P et al (2003) The effect of pronuclear morphology on early development and chromosomal abnormalities in cleavage-stage embryos. Hum Reprod 18:2413–2419

    Article  PubMed  Google Scholar 

  94. Chen C et al (2003) The relationship of pronuclear state morphology and chromosome status at cleavage stage. J Assist Reprod Genet 20(10):413–420

    Article  PubMed Central  PubMed  Google Scholar 

  95. Edirisinghe W et al (2005) Association of pronuclear Z score with rates of aneuploidy in in vitro-fertilised embryos. Reprod Fertil Dev 17(5):529–534

    Article  PubMed  CAS  Google Scholar 

  96. Bavister B (1995) Culture of preimplantation embryos: facts and artifacts. Hum Reprod Update 1:91

    Article  PubMed  CAS  Google Scholar 

  97. Sakkas D et al (1998) Early cleavage of human embryos to the two-cell stage after intracytoplasmic sperm injection as an indicator of embryo viability. Hum Reprod 13:182–187

    Article  PubMed  CAS  Google Scholar 

  98. Shoukir Y et al (1997) Early cleavage of in-vitro fertilized human embryos to the 2-cell stage: a novel indicator of embryo quality and viability. Hum Reprod 12:153–156

    Article  Google Scholar 

  99. Van Montfoort A et al (2004) Early cleavage is a valuable addition to existing embryo selection parameters: a study using single embryo transfers. Hum Reprod 19:2103–2108

    Article  PubMed  Google Scholar 

  100. Fenwick J et al (2002) Time from insemination to first cleavage predicts developmental competence of human preimplantation embryos in vitro. Hum Reprod 17:407–412

    Article  PubMed  CAS  Google Scholar 

  101. Edwards R et al (1980) Establishing full term human pregnancies using cleaving embryos grown in vitro. Br J Obstet Gynecol 87:737–757

    Article  CAS  Google Scholar 

  102. Bos-Mikish A et al (2001) Early cleavage of human embryos: an effective method for predicting successful IVF/ICSI outcome. Hum Reprod 16:2658–2661

    Article  Google Scholar 

  103. Lundin K et al (2001) Early embryo cleavage is a strong indicator of embryo quality in human IVF. Hum Reprod 16:2652–2657

    Article  PubMed  CAS  Google Scholar 

  104. Petersen C et al (2001) Embryo selection by the first cleavage parameter between 25 and 27 h after ICSI. J Assist Reprod Genet 18:209–212

    Article  PubMed  CAS  Google Scholar 

  105. Sakkas D et al (2001) Assessment of early cleaving in vitro fertilized human embryos at the 2- cell stage before transfer improves embryo selection. Fertil Steril 76:1150–1156

    Article  PubMed  CAS  Google Scholar 

  106. Giorgetti C et al (2007) Early cleavage: an additional predictor of high implantation rate following elective single embryo transfer. Reprod Biomed Online 14(1):85–91

    Article  PubMed  CAS  Google Scholar 

  107. Hardarson T et al (2001) Human embryos with unevenly sized blastomeres have lower pregnancy and implantation rates: indications for aneuploidy and multinucleation. Hum Reprod 16:313–318

    Article  PubMed  CAS  Google Scholar 

  108. Terriou P et al (2007) Relationship between even early cleavage and day 2 embryo score and assessment of their predictive value for pregnancy. Reprod Biomed Online 14(3):294–299

    Article  PubMed  CAS  Google Scholar 

  109. Guerif F (2007) Limited value of morphological assessment at days 1 and 2 to predict blastocyst developmental potential: a prospective study based on 4042 embryos. Hum Reprod 22:1973–1981

    Article  PubMed  CAS  Google Scholar 

  110. Puissant F et al (1987) Embryo scoring as a prognostic tool in IVF treatment. Hum Reprod 2:705–708

    PubMed  CAS  Google Scholar 

  111. Giorgetti C et al (1995) Embryo score to predict implantation after in – vitro fertilization: based on 957 single embryo transfers. Hum Reprod 10(9):2427–2431

    Article  PubMed  CAS  Google Scholar 

  112. Ziebe S et al (1997) Embryo morphology or cleavage stage: how to select the best embryos for transfer after in-vitro fertilization. Hum Reprod 10(9):2427–2431

    Google Scholar 

  113. Staessen C et al (1998) Genetic constitution of multinuclear blastomeres and their derivative daughter blastomeres. Hum Reprod 13:1625–1631

    Article  PubMed  CAS  Google Scholar 

  114. Van Royen E et al (2003) Multinucleation in cleavage stage embryos. Hum Reprod 18(5):1062–1069

    Article  PubMed  Google Scholar 

  115. Jackson K et al (1998) Multinucleation in normally fertilized embryos is associated with an accelerated ovulation induction response and lower implantation and pregnancy rates in in vitro fertilization – embryo transfer cycles. Fertil Steril 70:60–66

    Article  PubMed  CAS  Google Scholar 

  116. Kligman I et al (1996) The presence of multinucleated blastomeres in human embryos is correlated with chromosomal abnormalities. Hum Reprod 11:1492–1498

    Article  PubMed  CAS  Google Scholar 

  117. Pickering S et al (1995) An analysis of multinucleated blastomere formation in human embryos. Hum Reprod 10:1912–1922

    PubMed  CAS  Google Scholar 

  118. Laverge H et al (1997) Triple colour fluorescent in-situ- hybridization for chromosomes X, Y and 1 on spare human embryos. Hum Reprod 12:1492–1498

    Google Scholar 

  119. Alikani M et al (2000) Cleavage anomalies in early human embryos and survival after prolonged culture in-vitro. Hum Reprod 15:2634–2643

    Article  PubMed  CAS  Google Scholar 

  120. Levy R et al (1998) Laser scanning confocal imaging of abnormal arrested human preimplantation embryos. J Assist Reprod Genet 15:485–495

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  121. Gerris J et al (1999) Prevention of twin pregnancy after in-vitro fertilization or intracytoplasmic sperm injection based on strict embryo criteria: a prospective randomized clinical trial. Hum Reprod 14:2581–2587

    Article  PubMed  CAS  Google Scholar 

  122. Pelinck M et al (1998) Embryos cultured in vitro with multinucleated blastomeres have poor implantation potential in-vitro fertilization and intracytoplasmic sperm injection. Hum Reprod 13:960–963

    Article  PubMed  CAS  Google Scholar 

  123. Van Royen E et al (2001) Calculating the implantation potential of day 3 embryos in women younger than 38 years of age: a new model. Hum Reprod 16(2):326–332

    Article  PubMed  Google Scholar 

  124. Gerris J et al (2002) Elective single day 3 embryo transfer halves the twinning rate without decrease in the ongoing pregnancy rate of an IVF/ICSI programme. Hum Reprod 17:2626–2631

    Article  PubMed  Google Scholar 

  125. Edwards R et al (1981) The growth of human preimplantation embryos in vitro. Am J Obstet Gynecol 141(4):408–416

    PubMed  CAS  Google Scholar 

  126. Roux C et al (1995) Morphometric parameters of living human in-vitro fertilized embryos: importance of the asynchronous division process. Hum Reprod 10:1201–1207

    PubMed  CAS  Google Scholar 

  127. Hiragi T et al (2005) Mechanisms of first cleavage specification in the mouse egg: is our body plan set at day 0? Cell Cycle 4:661–664

    Article  Google Scholar 

  128. Gardener R et al (2006) An investigation of the origin and significance of bilateral symmetry of the pronuclear zygote in the mouse. Hum Reprod 21:492–502

    Article  Google Scholar 

  129. Dokras A et al (1993) Human blastocyst grading: an indicator of developmental potential. Hum Reprod 8:2119–2127

    PubMed  CAS  Google Scholar 

  130. Shapiro B et al (2000) Predictive value of 72-hr blastomere cell number on blastocyst development and success of subsequent transfer based on the degree of blastocyst development. Fertil Steril 73:582–586

    Article  PubMed  CAS  Google Scholar 

  131. Langley M et al (2001) Extended embryo culture in human assisted reproduction treatments. Hum Reprod 16(5):902–908

    Article  PubMed  CAS  Google Scholar 

  132. Magli M et al (1998) Incidence of chromosomal abnormalities from a morphologically normal cohort of embryos in poor-prognosis patients. J Assist Reprod Genet 15(5):297–301

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  133. Hnida C et al (2004) Computer-controlled, multilevel, morphometric analysis of blastomere size as biomarker of fragmentation and multinuclearity in human embryos. Hum Reprod 19:288–293

    Article  PubMed  Google Scholar 

  134. Carrell D et al (2009) A simplified coculture system using homologous attached cumulus tissue results in improved human embryo morphology and pregnancy rates during in vitro fertilization. J Assist Reprod Genet 16(7):344–349

    Article  Google Scholar 

  135. Antczak M et al (1999) Temporal and spatial aspects of fragmentation in early human embryos: possible effects on developmental competence and association with the differential elimination of regulatory proteins from polarized domains. Hum Reprod 14:429–447

    Article  PubMed  CAS  Google Scholar 

  136. Juriscova A et al (1996) Programmed cell death and human embryo fragmentation. Mol Hum Reprod 2(2):93–98

    Article  Google Scholar 

  137. Perez G et al (1999) Fragmentation and death (a.k.a. apoptosis) of ovulated oocytes. Mol Hum Reprod 5(5):414–420

    Article  PubMed  CAS  Google Scholar 

  138. Alikani M et al (1999) Human embryo fragmentation in vitro and its implications for pregnancy and implantation. Fertil Steril 71:836–842

    Article  PubMed  CAS  Google Scholar 

  139. Racowsky C et al (2003) Human embryo fragmentation in vitro and its implications for pregnancy and implantation. Fertil Steril 71:836–842

    Google Scholar 

  140. Hardy K et al (2003) Maintenance of the inner cell mass in human blastocysts from fragmented embryos. Biol Reprod 68(40):1165–1169

    PubMed  CAS  Google Scholar 

  141. Van Blerkom J et al (2001) A microscopic and biochemical study of fragmentation phenotypes in stage-appropriate human embryos. Hum Reprod 16:719–729

    Article  PubMed  Google Scholar 

  142. Sathanathan H et al (1988) The effects of cooling human oocytes. Hum Reprod 3:968–977

    Google Scholar 

  143. Plachot M et al (1987) Chromosome analysis of ovocytes and human embryos collected after fertilization in vitro. A model of natural selection against aneuploidy. Rev Fr Gynecol Obstet 83(910):613–617

    Google Scholar 

  144. Pellestor F et al (1994) Relationship between morphology and chromosomal constitution in human preimplantation embryo. Mol Reprod Dev 39(2):141–146

    Article  PubMed  CAS  Google Scholar 

  145. Steer C et al (1992) The cumulative embryo score: a predictive embryo scoring technique to select the optimal number of embryos to transfer in an in-vitro fertilization and embryo transfer programme. Hum Reprod 7:117–119

    PubMed  CAS  Google Scholar 

  146. Tan S et al (1992) Cumulative conception and live birth rates after in-vitro fertilization. Lancet 339:1390–1394

    Article  PubMed  CAS  Google Scholar 

  147. Desai N et al (2000) Morphological evaluation of human embryos and derivation of an embryo quality scoring system specific for day 3 embryos: a preliminary study. Hum Reprod 15(10):2190–2196

    Article  PubMed  CAS  Google Scholar 

  148. Dawson K et al (1995) Delaying transfer to the third day post-insemination, to select nonarrested embryos, increases development to the fetal heart stage. Hum Reprod 10:177–182

    Article  PubMed  CAS  Google Scholar 

  149. Jones G et al (1998) Factors affecting the success of human blastocyst development and pregnancy following in vitro fertilization and embryo transfer. Fertil Steril 70(6):1022–1029

    Article  PubMed  CAS  Google Scholar 

  150. Carillo A et al (1998) Improved clinical outcomes for in vitro fertilization with delay of embryo transfer from 48 to 72 hours after oocyte retrieval: use of glucose and phosphate free media. Fertil Steril 69:329–334

    Article  Google Scholar 

  151. Ebner T et al (2001) Embryo fragmentation in vitro and its impact on treatment and pregnancy outcome. Fertil Steril 76:281–285

    Article  PubMed  CAS  Google Scholar 

  152. Skiadas CC et al (2006) Early compaction on day 3 may be associated with increased implantation potential. Fertil Steril 86(5):1386–1391

    Article  PubMed  Google Scholar 

  153. Fiel D et al (2008) Day 4 embryo selection is equal to Day 5 using a new embryo scoring system validated in single embryo transfers. Hum Reprod 23(7):1505–1510

    Article  Google Scholar 

  154. della Ragione T et al (2007) Developmental stage on day-5 and fragmentation rate on day-3 can influence the implantation potential of top-quality blastocysts in IVF cycles with single embryo transfer. Reprod Biol Endocrinol 5:2

    Article  PubMed Central  PubMed  Google Scholar 

  155. Gardner R et al (2000) Flow of cells from polar to mural trophectoderm is polarized in the mouse blastocyst. Hum Reprod 15:694–701

    Article  PubMed  CAS  Google Scholar 

  156. Rijinder P et al (1998) The predictive value of day 3 embryo morphology regarding blastocyst formation, pregnancy and implantation rate after day 5 transfer following in-vitro fertilization or intracytoplasmic sperm injection. Hum Reprod 13:2869–2873

    Article  Google Scholar 

  157. Graham J et al (2000) Day 3 morphology is a poor predictor of blastocyst quality in extended culture. Fertil Steril 74:495–497

    Article  PubMed  CAS  Google Scholar 

  158. Milki A et al (2002) Accuracy of day 3 criteria for selecting the best embryo. Fertil Steril 77:1191–1195

    Article  PubMed  Google Scholar 

  159. Janny L et al (1994) Evidence for a strong paternal effect on human preimplantation embryo development and blastocyst formation. Mol Reprod Dev 38:36–42

    Article  PubMed  CAS  Google Scholar 

  160. Miller J et al (2001) The effect of intracytoplasmic sperm injection and semen parameters on blastocyst development in vitro. Hum Reprod 16:918–924

    Article  PubMed  CAS  Google Scholar 

  161. Seli E et al (2002) The extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after IVF. Fertil Steril 78(Suppl 1):S61

    Article  Google Scholar 

  162. Johnson M et al (1981) The foundation of two distinct cell lineages within mouse morula. Cell 24:71–80

    Article  PubMed  CAS  Google Scholar 

  163. Racowsky C et al (2000) The number of eight-cell embryos is a key determinant for selecting day 3 or day 5 transfer. Fertil Steril 73:558–564

    Article  PubMed  CAS  Google Scholar 

  164. Richter K et al (2001) Quantitative grading of a human blastocyst: optimal inner cell mass size and shape. Fertil Steril 76(6):1157–1167

    Article  PubMed  CAS  Google Scholar 

  165. Balaban B et al (2000) Blastocyst quality affects the success of blastocyst-stage embryo transfer. Fertil Steril 74:282–287

    Article  PubMed  CAS  Google Scholar 

  166. Gardner D et al (1999) In-vitro culture of human blastocysts. In: Jansen R, Mortimer D (eds) Towards reproductive certainty: fertility and genetics beyond 1999. Parthenon, Carnforth, pp 378–388

    Google Scholar 

  167. Racowsky C et al (2009) Is there an advantage in scoring early embryos on more than one day? Hum Reprod 24(9):2104–2113

    Article  PubMed Central  PubMed  Google Scholar 

  168. Fisch J et al (2003) The graduated embryo score predicts the outcome of assisted reproductive technologies better then a single day 3 evaluation and achieves results associated with blastocyst transfer from day 3 embryo transfer. Fertil Steril 80(6):1352–1358

    Article  PubMed  Google Scholar 

  169. Sjoblom P et al (2006) Prediction of embryo developmental potential and pregnancy based on early stage morphological characteristics. Fertil Steril 86:848–861

    Article  PubMed  Google Scholar 

  170. Terriou P et al (2001) Embryo score is a better predictor of pregnancy than the number of transferred embryos or female age. Fertil Steril 75:525–531

    Article  PubMed  CAS  Google Scholar 

  171. Holte J et al (2007) Construction of an evidence-based integrated morphology cleavage embryo score for implantation potential of embryos scored and transferred on Day 2 after oocyte retrieval. Hum Reprod 22:548–557

    Article  PubMed  CAS  Google Scholar 

  172. Vergouw C et al (2008) Metabolomic profiling by near-infrared spectroscopy as a tool to assess embryo viability: a novel, non-invasive method for embryo selection. Hum Reprod 23:1499–1504

    Article  PubMed  CAS  Google Scholar 

  173. Saith R et al (1998) Relationships between the developmental potential of human in-vitro fertilization embryos and features describing the embryo, oocyte and follicle. Hum Reprod 4:121–134

    Article  CAS  Google Scholar 

  174. Jurisica I et al (1998) Case-based reasoning in IVF: prediction and knowledge mining. Artif Intell Med 12:1–24

    Article  PubMed  CAS  Google Scholar 

  175. Trimarchi J et al (2003) Comparing data mining and logistic regression for predicting IVF outcome. Fertil Steril 80:S100

    Article  Google Scholar 

  176. Patrizi G et al (2004) Pattern recognition methods in human-assisted reproduction. Int Trans Oper Res 11:365–379

    Article  Google Scholar 

  177. Fisch J et al (2001) The Graduated Embryo Score (GES) predicts blastocyst formation and pregnancy rate from cleavage-stage embryos. Hum Reprod 16(9):1970–1975

    Article  PubMed  CAS  Google Scholar 

  178. Fisch J et al (2006) Graduated Embryo score and soluble human leukocyte antigen-expression improve assisted reproductive technology outcomes and suggest a basis for elective single-embryo transfer. Fertil Steril 87(4):757–763

    Article  Google Scholar 

  179. Neuber E et al (2003) Sequential assessment of individually cultured human embryos as an indicator of subsequent good quality blastocyst development. Hum Reprod 18:1307–1312

    Article  PubMed  CAS  Google Scholar 

  180. Neuber E et al (2006) Sequential embryo assessment investigator – driven morphological assessment at selecting a good quality blastocyst. Fertil Steril 85(3):794–796

    Article  PubMed  Google Scholar 

  181. Rienzi L et al (2002) Day 3 embryo transfer with combined evaluation at the pronuclear and embryo stages compares favourably with day 5 blastocyst transfer. Hum Reprod 17:1852–1855

    Article  PubMed  Google Scholar 

  182. Carrell D et al (1999) A simplified coculture system using homologous attached cumulus tissue results in improved human embryo morphology and pregnancy rates during in vitro fertilization. J Assist Reprod Genet 16(7):344–349

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  183. Hunault C et al (2002) A prediction model for selecting patients undergoing in vitro fertilization for selecting patients undergoing in vitro fertilization for elective single embryo transfer. Fertil Steril 77(40):725–732

    Article  PubMed  Google Scholar 

  184. James A et al (2006) The limited importance of pronuclear scoring of human zygotes. Hum Reprod 21(6):1599–1604

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry Behr Ph.D., H.C.L.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hegde, A., Behr, B. (2014). Embryo Culture and Selection: Morphological Criteria. In: Rosenwaks, Z., Wassarman, P. (eds) Human Fertility. Methods in Molecular Biology, vol 1154. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0659-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0659-8_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0658-1

  • Online ISBN: 978-1-4939-0659-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics