Skip to main content

Analysis of Diterpenes and Triterpenes from Plant Foliage and Roots

  • Protocol
  • First Online:
Plant Isoprenoids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1153))

Abstract

Terpene specialized metabolites exhibit multiple functions in plant–environment interactions and plant development. Molecular biologists investigating the biochemistry and molecular function of terpenes need to apply robust but yet sensitive analytical methods optimized and adapted to the structural diversity and often varying concentrations of terpene compounds in plant tissues. Here we present hands-on protocols for sample preparation and GC-MS or LC-MS/MS analysis of selected diterpene and triterpene hydrocarbons or oxygenated derivatives from roots and shoots of Arabidopsis and rice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bart H-J (2011) Extraction of natural products from plants—an introduction. In: Bart H-J, Pilz S (eds) Industrial scale natural products extraction. Wiley-VCH, Weinheim, Germany

    Chapter  Google Scholar 

  2. Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:297–304

    Article  CAS  PubMed  Google Scholar 

  3. Brewer PB, Koltai H, Beveridge CA (2013) Diverse roles of strigolactones in plant development. Mol Plant 6:18–28

    Article  CAS  PubMed  Google Scholar 

  4. Chaturvedi R, Venables B, Petros RA, Nalam V, Li MY, Wang XM, Takemoto LJ, Shah J (2012) An abietane diterpenoid is a potent activator of systemic acquired resistance. Plant J 71:161–172

    Article  CAS  PubMed  Google Scholar 

  5. Erkan N, Tao Z, Rupasinghe HP, Uysal B, Oksal BS (2012) Antibacterial activities of essential oils extracted from leaves of Murraya koenigii by solvent-free microwave extraction and hydro-distillation. Nat Prod Commun 7:121–124

    CAS  PubMed  Google Scholar 

  6. Fornari T, Vicente G, Vazquez E, Garcia-Risco MR, Reglero G (2012) Isolation of essential oil from different plants and herbs by supercritical fluid extraction. J Chromatogr A 1250:34–48

    Article  CAS  PubMed  Google Scholar 

  7. Tholl D, Boland W, Hansel A, Loreto F, Rose USR, Schnitzler JP (2006) Practical approaches to plant volatile analysis. Plant J 45:540–560

    Article  CAS  PubMed  Google Scholar 

  8. Schaub A, Blande JD, Graus M, Oksanen E, Holopainen JK, Hansel A (2010) Real-time monitoring of herbivore induced volatile emissions in the field. Physiol Plant 138:123–133

    Article  CAS  PubMed  Google Scholar 

  9. Magome H, Nomura T, Hanada A, Takeda-Kamiya N, Ohnishi T, Shinma Y, Katsumata T, Kawaide H, Kamiya Y, Yamaguchi S (2013) CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice. Proc Natl Acad Sci U S A 110:1947–52

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Wang Q, Hillwig ML, Peters RJ (2011) CYP99A3: functional identification of a diterpene oxidase from the momilactone biosynthetic gene cluster in rice. Plant J 65:87–95

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Vaughan MM, Wang Q, Webster FX, Kiemle D, Hong YJ, Tantillo DJ, Coates RM, Wray AT, Askew W, O’Donnell C, Tokuhisa JG, Tholl D (2013) Formation of the unusual volatile diterpene rhizathalene by the Arabidopsis class I terpene synthase TPS08 in the root stele is involved in defense against belowground herbivory. Plant Cell 25:1108–1125

    Google Scholar 

  12. Swaminathan S, Morrone D, Wang Q, Fulton DB, Peters RJ (2009) CYP76M7 is an ent-cassadiene C11α-hydroxylase defining a second multifunctional diterpenoid biosynthetic gene cluster in rice. Plant Cell 21:3315–3325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Xiang T, Shibuya M, Katsube Y, Tsutsumi T, Otsuka M, Zhang H, Masuda K, Ebizuka Y (2006) A new triterpene synthase from Arabidopsis thaliana produces a tricyclic triterpene with two hydroxyl groups. Org Lett 8:2835–2838

    Article  CAS  PubMed  Google Scholar 

  14. Kolesnikova MD, Obermeyer AC, Wilson WK, Lynch DA, Xiong Q, Matsuda SP (2007) Stereochemistry of water addition in triterpene synthesis: the structure of arabidiol. Org Lett 9:2183–2186

    Article  CAS  PubMed  Google Scholar 

  15. Wu H, Guo J, Chen S, Liu X, Zhou Y, Zhang X, Xu X (2013) Recent developments in qualitative and quantitative analysis of phytochemical constituents and their metabolites using liquid chromatography-mass spectrometry. J Pharm Biomed Anal 72:267–291

    Article  CAS  PubMed  Google Scholar 

  16. Gotti R (2011) Capillary electrophoresis of phytochemical substances in herbal drugs and medicinal plants. J Pharm Biomed Anal 55:775–801

    Article  CAS  PubMed  Google Scholar 

  17. Morlacchi P, Wilson WK, Xiong Q, Bhaduri A, Sttivend D, Kolesnikova MD, Matsuda SP (2009) Product profile of PEN3: the last unexamined oxidosqualene cyclase in Arabidopsis thaliana. Org Lett 11:2627–2630

    Article  CAS  PubMed  Google Scholar 

  18. Harinantenaina L, Kasai R, Yamasaki K (2002) Cussosaponins A-E, triterpene saponins from the leaves of Cussonia racemosa, a Malagasy endemic plant. Chem Pharm Bull 50:1290–1293

    Article  CAS  PubMed  Google Scholar 

  19. Gibeaut DM, Hulett J, Cramer GR, Seemann JR (1997) Maximal biomass of Arabidopsis thaliana using a simple, low-maintenance hydroponic method and favorable environmental conditions. Plant Physiol 115:317–319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Hetu MF, Tremblay LJ, Lefebvre DD (2005) High root biomass production in anchored Arabidopsis plants grown in axenic sucrose supplemented liquid culture. Biotechniques 39:345–349

    Google Scholar 

  21. Leonard J, Lygo B, Procter G (2013) Advanced practical organic chemistry, 3rd edn. CRC, Boca Raton, FL

    Google Scholar 

  22. Still WC, Kahn M, Mitra A (1978) Rapid chromatographic technique for preparative separations with moderate resolution. J Org Chem 43:2923–2925

    Article  CAS  Google Scholar 

  23. Field B, Osbourn AE (2008) Metabolic diversification-independent assembly of operon-like gene clusters in different plants. Science 320:543–547

    Google Scholar 

Download references

Acknowledgement

This work was supported by a National Science Foundation grant MCB-0950865.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothea Tholl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wang, Q., Sohrabi, R., Tholl, D. (2014). Analysis of Diterpenes and Triterpenes from Plant Foliage and Roots. In: RodrĂ­guez-ConcepciĂłn, M. (eds) Plant Isoprenoids. Methods in Molecular Biology, vol 1153. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0606-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0606-2_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0605-5

  • Online ISBN: 978-1-4939-0606-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics