Skip to main content

Evolutionary Engineering of Yeast

  • Protocol
  • First Online:
Yeast Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1152))

Abstract

Evolutionary engineering is an inverse metabolic engineering strategy which is based on increasing genetic diversity and screening large populations for desired phenotypes. This strategy is highly advantageous in certain situations over rational metabolic engineering approaches, since there is little or no requirement of detailed genetic background information for the trait of interest. Here, we describe the experimental methodology for selecting stress-resistant yeast strains via evolutionary engineering approach by either serial batch or chemostat cultivations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patnaik R (2008) Engineering complex phenotypes in industrial strains. Biotechnol Prog 24(1):38–47

    Article  CAS  Google Scholar 

  2. Bailey JE (1991) Toward a science of metabolic engineering. Science 252(5013):1668–1675

    Article  CAS  Google Scholar 

  3. Bailey JE, Shurlati A, Hatzimanikatis V, Lee K, Renner WA, Tsai PS (1996) Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnol Bioeng 52(1):109–121

    Article  CAS  Google Scholar 

  4. Oud B, van Maris AJA, Daran JM, Pronk JT (2012) Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast. FEMS Yeast Res 12(2):183–196

    Article  CAS  Google Scholar 

  5. Bro C, Nielsen J (2004) Impact of ‘ome’ analyses on inverse metabolic engineering. Metab Eng 6(3):204–211

    Article  CAS  Google Scholar 

  6. Warner JR, Patnaik R, Gill RT (2009) Genomics enabled approaches in strain engineering. Curr Opin Microbiol 12(3):223–230

    Article  CAS  Google Scholar 

  7. Çakar ZP, Turanlı-Yıldız B, Alkım C, Yılmaz Ü (2012) Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties. FEMS Yeast Res 12(2): 171–182

    Article  Google Scholar 

  8. Çakar ZP, Alkim C, Turanli B, Tokman N, Akman S, Sarikaya M, Tamerler C, Benbadis L, Francois JM (2009) Isolation of cobalt hyper-resistant mutants of Saccharomyces cerevisiae by in vivo evolutionary engineering approach. J Biotechnol 143(2):130–138

    Article  Google Scholar 

  9. Çakar ZP, Seker UOS, Tamerler C, Sonderegger M, Sauer U (2005) Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Res 5(6–7): 569–578

    Article  Google Scholar 

  10. Russek E, Colwell RR (1983) Computation of most probable numbers. Appl Environ Microbiol 45(5):1646–1650

    CAS  Google Scholar 

  11. Lindquist J (2012) A five-tube MPN table. http://www.jlindquist.net/generalmicro/ 102dil3a.html. Accessed on November 2012

  12. Sauer U (2001) Evolutionary engineering of industrially important microbial phenotypes. Adv Biochem Eng Biotechnol 73:129–169

    CAS  Google Scholar 

  13. Lawrence CW (1991) Classical mutagenesis techniques. Methods Enzymol 194:273–281

    Article  CAS  Google Scholar 

  14. Çakar ZP, Sauer U, Bailey J (1999) Metabolic engineering of yeast: the perils of auxotrophic hosts. Biotechnol Lett 21(7):611–616

    Article  Google Scholar 

  15. Gocke E, Buergin H, Mueller L, Pfister T (2009) Literature review on the genotoxicity, reproductive toxicity, and carcinogenicity of ethyl methanesulfonate. Toxicol Lett 190(3): 254–265

    Article  CAS  Google Scholar 

  16. Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3:371–394

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank TÜBİTAK (project no: 109 T638, 105 T314), COST (Action no: CM0902), and ITU Research Funds (project no: 33237, 34200) for financial support of our evolutionary engineering research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Petek Çakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Alkım, C., Turanlı-Yıldız, B., Çakar, Z.P. (2014). Evolutionary Engineering of Yeast. In: Mapelli, V. (eds) Yeast Metabolic Engineering. Methods in Molecular Biology, vol 1152. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0563-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0563-8_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0562-1

  • Online ISBN: 978-1-4939-0563-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics