Skip to main content

An Overview on Selection Marker Genes for Transformation of Saccharomyces cerevisiae

  • Protocol
  • First Online:
Yeast Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1152))

Abstract

For genetic manipulation of yeast, numerous selection marker genes have been employed. These include prototrophic markers, markers conferring drug resistance, autoselection markers, and counterselectable markers. This chapter describes the different classes of selection markers and provides a number of examples for different applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Längle-Rouault F, Jacobs E (1995) A method for performing precise alterations in the yeast genome using a recyclable selectable marker. Nucleic Acids Res 23:3079–3081

    Article  Google Scholar 

  2. Wach A, Brachat A, Alberti-Segui C et al (1997) Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae. Yeast 13:1065–1075

    Article  CAS  Google Scholar 

  3. Ugolini S, Bruschi CV (1996) The red/white colony color assay in the yeast Saccharomyces cerevisiae: epistatic growth advantage of white ade8-18, ade2 cells over red ade2 cells. Curr Genet 30:485–492

    Article  CAS  Google Scholar 

  4. Cost GJ, Boeke JD (1996) A useful colony colour phenotype associated with the yeast selectable/counter-selectable marker MET15. Yeast 12:939–941

    Article  CAS  Google Scholar 

  5. Brachmann CB, Davies A, Cost GJ et al (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132

    Article  CAS  Google Scholar 

  6. Chee MK, Haase SB (2012) New and redesigned pRS plasmid shuttle vectors for genetic manipulation of Saccharomyces cerevisiae. G3 (Bethesda) 2:515–526

    Article  CAS  Google Scholar 

  7. Sadowski I, Su T-C, Parent J (2007) Disintegrator vectors for single-copy yeast chromosomal integration. Yeast 24:447–455

    Article  CAS  Google Scholar 

  8. Shimoi H, Okuda M, Ito K (2000) Molecular cloning and application of a gene complementing pantothenic acid auxotrophy of sake yeast Kyokai no. 7. J Biosci Bioeng 90:643–647

    Article  CAS  Google Scholar 

  9. Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    CAS  Google Scholar 

  10. Ito-Harashima S, McCusker JH (2004) Positive and negative selection LYS5MX gene replacement cassettes for use in Saccharomyces cerevisiae. Yeast 21:53–61

    Article  CAS  Google Scholar 

  11. Giersberg M, Degelmann A, Bode R et al (2012) Production of a thermostable alcohol dehydrogenase from Rhodococcus ruber in three different yeast species using the Xplor®2 transformation/expression platform. J Ind Microbiol Biotechnol 39:1385–1396

    Article  CAS  Google Scholar 

  12. Goldstein AL, Pan X, McCusker JH (1999) Heterologous URA3MX cassettes for gene replacement in Saccharomyces cerevisiae. Yeast 15:507–511

    Article  CAS  Google Scholar 

  13. Gueldener U, Heinisch J, Koehler GJ et al (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30:e23

    Article  CAS  Google Scholar 

  14. Olesen K, Johannesen PF, Hoffmann L et al (2000) The pYC plasmids, a series of cassette-based yeast plasmid vectors providing means of counter-selection. Yeast 16:1035–1043

    Article  CAS  Google Scholar 

  15. Jakopec V, Walla E, Fleig U (2011) Versatile use of Schizosaccharomyces pombe plasmids in Saccharomyces cerevisiae. FEMS Yeast Res 11:653–655

    Article  CAS  Google Scholar 

  16. Hartzog PE, Nicholson BP, McCusker JH (2005) Cytosine deaminase MX cassettes as positive/negative selectable markers in Saccharomyces cerevisiae. Yeast 22:789–798

    Article  CAS  Google Scholar 

  17. Regenberg B, Hansen J (2000) GAP1, a novel selection and counter-selection marker for multiple gene disruptions in Saccharomyces cerevisiae. Yeast 16:1111–1119

    Article  CAS  Google Scholar 

  18. Leite FC, Dos Anjos RS, Basilio AC et al (2013) Construction of integrative plasmids suitable for genetic modification of industrial strains of Saccharomyces cerevisiae. Plasmid 69:114–117

    Article  CAS  Google Scholar 

  19. Zhang Y, Wang Z-Y, He X-P et al (2008) New industrial brewing yeast strains with ILV2 disruption and LSD1 expression. Int J Food Microbiol 123:18–24

    Article  CAS  Google Scholar 

  20. Pronk JT (2002) Auxotrophic yeast strains in fundamental and applied research. Appl Environ Microbiol 68:2095–2100

    Article  CAS  Google Scholar 

  21. Napp SJ, Da Silva NA (1993) Enhancement of cloned gene product synthesis via autoselection in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 41:801–810

    Article  CAS  Google Scholar 

  22. Compagno C, Tura A, Ranzi BM et al (1993) Copy number modulation in an autoselection system for stable plasmid maintenance in Saccharomyces cerevisiae. Biotechnol Prog 9:594–599

    Article  CAS  Google Scholar 

  23. Kawasaki GH, Bell L (1999) Stable DNA constructs. US Patent 5871957

    Google Scholar 

  24. Thim L, Hansen MT, Norris K et al (1986) Secretion and processing of insulin precursors in yeast. Proc Natl Acad Sci U S A 83:6766–6770

    Article  CAS  Google Scholar 

  25. Unternährer S, Pridmore D, Hinnen A (1991) A new system for amplifying 2 μm plasmid copy number in Saccharomyces cerevisiae. Mol Microbiol 5:1539–1548

    Article  Google Scholar 

  26. Geymonat M, Spanos A, Sedgwick SG (2007) A Saccharomyces cerevisiae autoselection system for optimised recombinant protein expression. Gene 399:120–128

    Article  CAS  Google Scholar 

  27. Rech SB, Stateva LI, Oliver SG (1992) Complementation of the Saccharomyces cerevisiae srb1-1 mutation: an autoselection system for stable plasmid maintenance. Curr Genet 21:339–344

    Article  CAS  Google Scholar 

  28. van den Berg MA, Steensma HY (1997) Expression cassettes for formaldehyde and fluoroacetate resistance, two dominant markers in Saccharomyces cerevisiae. Yeast 13:551–559

    Article  Google Scholar 

  29. del Pozo L, Abarca D, Claros MG, Jiménez A (1991) Cycloheximide resistance as a yeast cloning marker. Curr Genet 19:353–358

    Article  Google Scholar 

  30. Park H, Lopez NI, Bakalinsky AT (1999) Use of sulfite resistance in Saccharomyces cerevisiae as a dominant selectable marker. Curr Genet 36:339–344

    Article  CAS  Google Scholar 

  31. Lacková D, Šubík J (1999) Use of mutated PDR3 gene as a dominant selectable marker in transformation of prototrophic yeast strains. Folia Microbiol 44:171–176

    Article  Google Scholar 

  32. Miyajima A, Miyajima I, Arai K-I, Arai N (1984) Expression of plasmid R388-encoded type II dihydrofolate reductase as a dominant selective marker in Saccharomyces cerevisiae. Mol Cell Biol 4:407–414

    CAS  Google Scholar 

  33. Wach A, Brachat A, Pöhlmann R, Philippsen P (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808

    Article  CAS  Google Scholar 

  34. Hottiger T, Kuhla J, Pohlig G et al (1995) 2-μm vectors containing the Saccharomyces cerevisiae metallothionein gene as a selectable marker: excellent stability in complex media, and high-level expression of a recombinant protein from a CUP1-promoter-controlled expression cassette in cis. Yeast 11:1–14

    Article  CAS  Google Scholar 

  35. Zhang JG, Liu XY, He XP et al (2011) Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene. Biotechnol Lett 33:277–284

    Article  CAS  Google Scholar 

  36. Doignon F, Aigle M, Ribereau-Gayon P (1993) Resistance to imidazoles and triazoles in Saccharomyces cerevisiae as a new dominant marker. Plasmid 30:224–233

    Article  CAS  Google Scholar 

  37. Ogawa-Mitsuhashi K, Sagane K, Kuromitsu J et al (2009) MPR1 as a novel selection marker in Saccharomyces cerevisiae. Yeast 26:587–593

    Article  CAS  Google Scholar 

  38. Akada R, Shimizu Y, Matsushita Y et al (2002) Use of a YAP1 overexpression cassette conferring specific resistance to cerulenin and cycloheximide as an efficient selectable marker in the yeast Saccharomyces cerevisiae. Yeast 19:17–28

    Article  CAS  Google Scholar 

  39. Fukuda K, Watanabe M, Asano K et al (1992) Molecular breeding of a sake yeast with a mutated ARO4 gene which causes both resistance to o-fluoro-DL-phenylalanine and increased production of β-phenethyl alcohol. J Ferment Bioeng 73:366–369

    Article  CAS  Google Scholar 

  40. Hashida-Okado T, Ogawa A, Kato I, Takesako K (1998) Transformation system for prototrophic industrial yeasts using the AUR1 gene as a dominant selection marker. FEBS Lett 425:117–122

    Article  CAS  Google Scholar 

  41. Bendoni B, Cavalieri D, Casalone E et al (1999) Trifluoroleucine resistance as a dominant molecular marker in transformation of strains of Saccharomyces cerevisiae isolated from wine. FEMS Microbiol Lett 180:229–233

    Article  CAS  Google Scholar 

  42. Xie Q, Jiménez A (1996) Molecular cloning of a novel allele of SMR1 which determines sulfometuron methyl resistance in Saccharomyces cerevisiae. FEMS Microbiol Lett 137:165–168

    Article  CAS  Google Scholar 

  43. Kunze G, Bode R, Rintala H, Hofemeister J (1989) Heterologous gene expression of the glyphosate resistance marker and its application in yeast transformation. Curr Genet 15:91–98

    Article  CAS  Google Scholar 

  44. Hadfield C, Cashmore AM, Meacock PA (1986) An efficient chloramphenicol-resistance marker for Saccharomyces cerevisiae and Escherichia coli. Gene 45:149–158

    Article  CAS  Google Scholar 

  45. Vorachek-Warren MK, McCusker JH (2004) DsdA (d-serine deaminase): a new heterologous MX cassette for gene disruption and selection in Saccharomyces cerevisiae. Yeast 21:163–171

    Article  CAS  Google Scholar 

  46. Goldstein AL, McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15:1541–1553

    Article  CAS  Google Scholar 

  47. Raymond M, Ruetz S, Thomas DY, Gros P (1994) Functional expression of P-glycoprotein in Saccharomyces cerevisiae confers cellular resistance to the immunosuppressive and antifungal agent FK520. Mol Cell Biol 14:277–286

    CAS  Google Scholar 

  48. Boeke JD, LaCroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197:345–346

    Article  CAS  Google Scholar 

  49. Alani E, Cao L, Kleckner N (1987) A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541–545

    Article  CAS  Google Scholar 

  50. Reid RJ, Lisby M, Rothstein R (2002) Cloning-free genome alterations in Saccharomyces cerevisiae using adaptamer-mediated PCR. Methods Enzymol 350:258–277

    Article  CAS  Google Scholar 

  51. Storici F, Lewis LK, Resnick MA (2001) In vivo site-directed mutagenesis using oligonucleotides. Nat Biotechnol 19:773–776

    Article  CAS  Google Scholar 

  52. Fairhead C, Llorente B, Denis F et al (1996) New vectors for combinatorial deletions in yeast chromosomes and for gap-repair cloning using “split-marker” recombination. Yeast 12:1439–1457

    Article  CAS  Google Scholar 

  53. Storici F, Durham CL, Gordenin DA, Resnick MA (2003) Chromosomal site-specific double-strand breaks are efficiently targeted for repair by oligonucleotides in yeast. Proc Natl Acad Sci U S A 100:14994–14999

    Article  CAS  Google Scholar 

  54. Güldener U, Heck S, Fielder T et al (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524

    Article  Google Scholar 

  55. Storici F, Coglievina M, Bruschi CV (1999) A 2-μm DNA-based marker recycling system for multiple gene disruption in the yeast Saccharomyces cerevisiae. Yeast 15:271–283

    Article  CAS  Google Scholar 

  56. Chattoo BB, Sherman F, Azubalis DA et al (1979) Selection of lys2 mutants of the yeast Saccharomyces cerevisiae by the utilization of α-aminoadipate. Genetics 93:51–65

    CAS  Google Scholar 

  57. Toyn JH, Gunyuzlu PL, White WH et al (2000) A counterselection for the tryptophan pathway in yeast: 5-fluoroanthranilic acid resistance. Yeast 16:553–560

    Article  CAS  Google Scholar 

  58. Suizu T, Iimura Y, Gomi K et al (1989) L-Canavanine resistance as a positive selectable marker in diploid yeast transformation through integral disruption of the CAN1 gene. Agric Biol Chem 53:431–436

    Article  CAS  Google Scholar 

  59. Akada R, Hirosawa I, Kawahata M et al (2002) Sets of integrating plasmids and gene disruption cassettes containing improved counter-selection markers designed for repeated use in budding yeast. Yeast 19:393–402

    Article  CAS  Google Scholar 

  60. Babazadeh R, Jafari SM, Zackrisson M et al (2011) The Ashbya gossypii EF- promoter of the ubiquitously used MX cassettes is toxic to Saccharomyces cerevisiae. FEBS Lett 585:3907–3913

    Article  CAS  Google Scholar 

  61. Wang X, Wang Z, Da Silva NA (1996) G418 Selection and stability of cloned genes integrated at chromosomal delta sequences of Saccharomyces cerevisiae. Biotechnol Bioeng 49:45–51

    Article  CAS  Google Scholar 

  62. Loison G, Vidal A, Findeli A et al (1989) High-level of expression of a protective antigen of schistosomes in Saccharomyces cerevisiae. Yeast 5:497–507

    Article  CAS  Google Scholar 

  63. Erhart E, Hollenberg CP (1983) The presence of a defective LEU2 gene on 2 μ DNA recombinant plasmids of Saccharomyces cerevisiae is responsible for curing and high copy number. J Bacteriol 156:625–635

    CAS  Google Scholar 

  64. Chen Y, Partow S, Scalcinati G et al (2012) Enhancing the copy number of episomal plasmids in Saccharomyces cerevisiae for improved protein production. FEMS Yeast Res 12:598–607

    Article  CAS  Google Scholar 

  65. Solis-Escalante D, Kuijpers NGA, Bongaerts N et al (2013) amdSYM, a new dominant recyclable marker cassette for Saccharomyces cerevisiae. FEMS Yeast Res 13:126–139

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verena Siewers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Siewers, V. (2014). An Overview on Selection Marker Genes for Transformation of Saccharomyces cerevisiae . In: Mapelli, V. (eds) Yeast Metabolic Engineering. Methods in Molecular Biology, vol 1152. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0563-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0563-8_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0562-1

  • Online ISBN: 978-1-4939-0563-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics