Skip to main content

3D-Fluorescence In Situ Hybridization of Intact, Anaerobic Biofilm

  • Protocol
  • First Online:
Engineering and Analyzing Multicellular Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1151))

Abstract

FISH (fluorescence in situ hybridization) is a valuable technique to visualize and quantify localization of different microbial species within biofilms. Biofilm conformation can be altered during typical sample preparation for FISH, which can impact observations in multispecies biofilms, including the relative positions of cells. Here, we describe methods to preserve 3-D structure during FISH for visualization of an anaerobic coculture biofilm of Desulfovibrio vulgaris Hildenborough and Methanococcus maripaludis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wagner M, Haider S (2012) New trends in fluorescence in situ hybridization for identification and functional analyses of microbes. Curr Opin Biotechnol 23:96–102

    Article  CAS  Google Scholar 

  2. Pernthaler A, Pernthaler J, Amann R (2002) Fluoresecence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68:3094–3101

    Article  CAS  Google Scholar 

  3. Wagner M (2009) Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu Rev Microbiol 63:411–429

    Article  CAS  Google Scholar 

  4. Dekas AE, Poretsky RS, Orphan VJ (2009) Deep-sea Archaea fix and share nitrogen in methane-consuming microbial consortia. Science 326:422–426

    Article  CAS  Google Scholar 

  5. Gieseke A, Purkhold U, Wagner M, Amann R, Schramm A (2001) Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Appl Environ Microbiol 67:1351–1362

    Article  CAS  Google Scholar 

  6. Huang WE, Stoecker K, Griffiths R, Newbold L, Daims H, Whiteley AS, Wagner M (2007) Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ Microbiol 9: 1878–181889

    Article  CAS  Google Scholar 

  7. Wagner M, Nielsen PH, Loy A, Nielsen JL, Daims H (2006) Linking microbial community structure with function: fluorescence in situ hybridization-microautoradiography and isotope arrays. Curr Opin Biotechnol 17:1–9

    Article  CAS  Google Scholar 

  8. Branda SS, Vik A, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26

    Article  CAS  Google Scholar 

  9. Valm AM, Mark Welch JL, Rieken CW, Hasegawa Y, Sogin ML, Oldenbourg R, Dewhirst FE, Borisy V (2011) Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc Nat Acad Sci U S A 108: 4152–4157

    Article  CAS  Google Scholar 

  10. Daims H, Lücker S, Wagner M (2006) daime, a novel image analysis program for microbial ecology and biofilm research. Environ Microbiol 8:200–213

    Article  CAS  Google Scholar 

  11. Schramm A, Fuchs BM, Nielsen JL, Tonnolla M, Stahl DA (2002) Fluorescence in situ hybridization of 16S rRNA gene clones (Clone-FISH) for probe validation and screening of clone libraries. Environ Microbiol 4: 713–720

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Betsey Pitts for microscopy assistance and Dr. Sebastian Lücker for thoughtful discussions. Special thanks to Peg Dirckx for preparing Figs. 1 and 2. This work was supported as a component of ENIGMA, a scientific focus area program supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomics: GTL Foundational Science through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. K.A.B. and L.B.C. were also supported by a NSF-IGERT fellowship in Geobiological Systems at Montana State University (DGE 0654336). The confocal microscopy equipment used was purchased with funding from the NSF-Major Research Instrumentation Program and the M.J. Murdock Charitable Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew W. Fields .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Brileya, K.A., Camilleri, L.B., Fields, M.W. (2014). 3D-Fluorescence In Situ Hybridization of Intact, Anaerobic Biofilm. In: Sun, L., Shou, W. (eds) Engineering and Analyzing Multicellular Systems. Methods in Molecular Biology, vol 1151. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0554-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0554-6_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0553-9

  • Online ISBN: 978-1-4939-0554-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics