Skip to main content

Recent Progress in Engineering Human-Associated Microbiomes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1151))

Abstract

Recent progress in molecular biology and genetics opens up the possibility of engineering a variety of biological systems, from single-cellular to multicellular organisms. The consortia of microbes that reside on the human body, the human-associated microbiota, are particularly interesting as targets for forward engineering and manipulation due to their relevance in health and disease. New technologies in analysis and perturbation of the human microbiota will lead to better diagnostic and therapeutic strategies against diseases of microbial origin or pathogenesis. Here, we discuss recent advances that are bringing us closer to realizing the true potential of an engineered human-associated microbial community.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Huttenhower C, Gevers D, Knight R et al (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214

    CAS  Google Scholar 

  2. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    CAS  Google Scholar 

  3. Turnbaugh PJ, Ley RE, Hamady M et al (2007) The human microbiome project. Nature 449:804–810

    CAS  Google Scholar 

  4. Nicholson JK, Holmes E, Wilson ID (2005) Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol 3:431–438

    CAS  Google Scholar 

  5. Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449:811–818

    CAS  Google Scholar 

  6. Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    CAS  Google Scholar 

  7. Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129

    CAS  Google Scholar 

  8. Hayes CS, Aoki SK, Low DA (2010) Bacterial contact-dependent delivery systems. Annu Rev Genet 44:71–90

    CAS  Google Scholar 

  9. Bassler BL, Losick R (2006) Bacterially speaking. Cell 125:237–246

    CAS  Google Scholar 

  10. Walker AW, Duncan SH, Harmsen HJ et al (2008) The species composition of the human intestinal microbiota differs between particle-associated and liquid phase communities. Environ Microbiol 10:3275–3283

    CAS  Google Scholar 

  11. Smillie CS, Smith MB, Friedman J et al (2011) Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480:241–244

    CAS  Google Scholar 

  12. Bradshaw DJ, Homer KA, Marsh PD et al (1994) Metabolic cooperation in oral microbial communities during growth on mucin. Microbiology 140:3407–3412

    CAS  Google Scholar 

  13. Falony G, Vlachou A, Verbrugghe K et al (2006) Cross-feeding between Bifido-bacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 72:7835–7841

    CAS  Google Scholar 

  14. Salazar N, Gueimonde M, Hernández-Barranco AM et al (2008) Exopolysaccharides produced by intestinal Bifidobacterium strains act as fermentable substrates for human intestinal bacteria. Appl Environ Microbiol 74:4737–4745

    CAS  Google Scholar 

  15. Gibson GR, Cummings JH, Macfarlane GT et al (1990) Alternative pathways for hydrogen disposal during fermentation in the human colon. Gut 31:679–683

    CAS  Google Scholar 

  16. Dabard J, Bridonneau C, Phillipe C et al (2001) Ruminococcin A, a new lantibiotic produced by a Ruminococcus gnavus strain isolated from human feces. Appl Environ Microbiol 67:4111–4118

    CAS  Google Scholar 

  17. Santagati M, Scillato M, Patanè F et al (2012) Bacteriocin-producing oral streptococci and inhibition of respiratory pathogens. FEMS Immunol Med Microbiol 65:23–31

    CAS  Google Scholar 

  18. Gillor O, Etzion A, Riley MA (2008) The dual role of bacteriocins as anti- and probiotics. Appl Microbiol Biotechnol 81:591–606

    CAS  Google Scholar 

  19. Davey ME, O’toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    CAS  Google Scholar 

  20. Marsh PD, Moter A, Devine DA (2011) Dental plaque biofilms: communities, conflict and control. Periodontology 2000 2000(55):16–35

    Google Scholar 

  21. Boles BR, Thoendel M, Singh PK (2004) Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci U S A 101:16630–16635

    CAS  Google Scholar 

  22. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210

    CAS  Google Scholar 

  23. Frost LS, Leplae R, Summers AO et al (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732

    CAS  Google Scholar 

  24. Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3:679–687

    CAS  Google Scholar 

  25. Norman A, Hansen LH, Sørensen SJ (2009) Conjugative plasmids: vessels of the communal gene pool. Philos Trans R Soc Lond B Biol Sci 364:2275–2289

    CAS  Google Scholar 

  26. Jones BV, Marchesi JR (2007) Accessing the mobile metagenome of the human gut microbiota. Mol Biosyst 3:749–758

    CAS  Google Scholar 

  27. Dobrindt U, Hochhut B, Hentschel U et al (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2:414–424

    CAS  Google Scholar 

  28. Baquero F (2004) From pieces to patterns: evolutionary engineering in bacterial pathogens. Nat Rev Microbiol 2:510–518

    CAS  Google Scholar 

  29. Salyers AA (1993) Gene transfer in the mammalian intestinal tract. Curr Opin Biotechnol 4:294–298

    CAS  Google Scholar 

  30. Reid G, Younes JA, Van der Mei HC et al (2010) Microbiota restoration: natural and supplemented recovery of human microbial communities. Nat Rev Microbiol 9:27–38

    Google Scholar 

  31. Koenig JE, Spor A, Scalfone N et al (2010) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 108(Suppl 1):4578–4585

    Google Scholar 

  32. Van den Abbeele P, Van de Wiele T, Verstraete W et al (2011) The host selects mucosal and luminal associations of coevolved gut microorganisms: a novel concept. FEMS Microbiol Rev 35:681–704

    Google Scholar 

  33. Giraud A, Arous S, De Paepe M et al (2008) Dissecting the genetic components of adaptation of Escherichia coli to the mouse gut. PLoS Genet 4:e2

    Google Scholar 

  34. Gill SR, Pop M, Deboy RT et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    CAS  Google Scholar 

  35. Bäckhed F, Ley RE, Sonnenburg JL et al (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920

    Google Scholar 

  36. Guarner F, Malagelada J-R (2003) Gut flora in health and disease. Lancet 361:512–519

    Google Scholar 

  37. Stappenbeck TS, Hooper LV, Gordon JI (2002) Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci U S A 99:15451–15455

    CAS  Google Scholar 

  38. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F et al (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229–241

    CAS  Google Scholar 

  39. Hooper LV (2004) Bacterial contributions to mammalian gut development. Trends Microbiol 12:129–134

    CAS  Google Scholar 

  40. Pryde SE, Duncan SH, Hold GL et al (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217:133–139

    CAS  Google Scholar 

  41. Round JL, Mazmanian SK (2010) Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A 107:12204–12209

    CAS  Google Scholar 

  42. Wu GD, Chen J, Hoffmann C et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108

    CAS  Google Scholar 

  43. Serino M, Luche E, Gres S et al (2012) Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 61:543–553

    CAS  Google Scholar 

  44. Honda K, Littman DR (2011) The Microbiome in Infectious Disease and Inflammation. Annu Rev Immunol 30:759–795

    Google Scholar 

  45. Ley RE, Bäckhed F, Turnbaugh P et al (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102:11070–11075

    CAS  Google Scholar 

  46. Turnbaugh PJ, Bäckhed F, Fulton L et al (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223

    CAS  Google Scholar 

  47. Murphy EF, Cotter PD, Healy S et al (2010) Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut 59:1635–1642

    CAS  Google Scholar 

  48. Cerf-Bensussan N, Gaboriau-Routhiau V (2010) The immune system and the gut microbiota: friends or foes? Nat Rev Immunol 10:735–744

    CAS  Google Scholar 

  49. Wen L, Ley RE, Volchkov PY et al (2008) Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455:1109–1113

    CAS  Google Scholar 

  50. Lee YK, Menezes JS, Umesaki Y et al (2010) Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 108(Suppl 1):4615–4622

    Google Scholar 

  51. Abraham C, Cho JH (2009) Inflammatory bowel disease. N Engl J Med 361:2066–2078

    CAS  Google Scholar 

  52. Nell S, Suerbaum S, Josenhans C (2010) The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nat Rev Microbiol 8:564–577

    CAS  Google Scholar 

  53. Sokol H, Seksik P, Furet JP et al (2009) Low counts of faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 15:1183–1189

    CAS  Google Scholar 

  54. Manichanh C, Rigottier-Gois L, Bonnaud E et al (2006) Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55:205–211

    CAS  Google Scholar 

  55. He T, Venema K, Priebe MG et al (2008) The role of colonic metabolism in lactose intolerance. Eur J Clin Invest 38:541–547

    CAS  Google Scholar 

  56. He T, Priebe MG, Harmsen HJM et al (2006) Colonic fermentation may play a role in lactose intolerance in humans. J Nutr 136:58

    CAS  Google Scholar 

  57. Tehrani AB, Nezami BG, Gewirtz A et al (2012) Obesity and its associated disease: a role for microbiota? Neurogastroenterol Motil 24:305–311

    CAS  Google Scholar 

  58. Everard A, Lazarevic V, Derrien M et al (2011) Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60:2775–2786

    CAS  Google Scholar 

  59. Giongo A, Gano KA, Crabb DB et al (2010) Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 5:82–91

    Google Scholar 

  60. Wu H-J, Ivanov II, Darce J et al (2010) Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32:815–827

    CAS  Google Scholar 

  61. Lam V, Su J, Koprowski S et al (2012) Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J 26(4):1727–1735

    CAS  Google Scholar 

  62. Wardwell LH, Huttenhower C, Garrett WS (2011) Current concepts of the intestinal microbiota and the pathogenesis of infection. Curr Infect Dis Rep 13:28–34

    Google Scholar 

  63. Gori A, Tincati C, Rizzardini G et al (2008) Early impairment of gut function and gut flora supporting a role for alteration of gastrointestinal mucosa in human immunodeficiency virus pathogenesis. J Clin Microbiol 46:757–758

    Google Scholar 

  64. Stecher B, Hardt W-D (2008) The role of microbiota in infectious disease. Trends Microbiol 16:107–114

    CAS  Google Scholar 

  65. Walk ST, Young VB (2008) Emerging insights into antibiotic-associated diarrhea and clostridium difficile infection through the lens of microbial ecology. Interdiscip Perspect Infect Dis 2008:125081

    Google Scholar 

  66. Vrieze A, Holleman F, Zoetendal EG et al (2010) The environment within: how gut microbiota may influence metabolism and body composition. Diabetologia 53:606–613

    CAS  Google Scholar 

  67. Hou JK, Abraham B, El-Serag H (2011) Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am J Gastroenterol 106:563–573

    CAS  Google Scholar 

  68. Fava F, Lovegrove JA, Gitau R et al (2006) The gut microbiota and lipid metabolism: implications for human health and coronary heart disease. Curr Med Chem 13:3005–3021

    CAS  Google Scholar 

  69. Wang Z, Klipfell E, Bennett BJ et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63

    CAS  Google Scholar 

  70. Dobkin JF, Saha JR, Butler VP et al (1983) Digoxin-inactivating bacteria: identification in human gut flora. Science 220:325–327

    CAS  Google Scholar 

  71. Clayton TA, Baker D, Lindon JC et al (2009) Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci U S A 106:14728–14733

    CAS  Google Scholar 

  72. Wallace BD, Wang H, Lane KT et al (2010) Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330:831–835

    CAS  Google Scholar 

  73. Marsh PD (1994) Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 8:263–271

    CAS  Google Scholar 

  74. Azarpazhooh A, Leake JL (2006) Systematic review of the association between respiratory diseases and oral health. J Periodontol 77:1465–1482

    Google Scholar 

  75. Ford PJ, Gemmell E, Timms P et al (2007) Anti-P. gingivalis response correlates with atherosclerosis. J Dent Res 86:35–40

    CAS  Google Scholar 

  76. Li L, Messas E, Batista EL et al (2002) Porphyromonas gingivalis infection accelerates the progression of atherosclerosis in a heterozygous apolipoprotein e-deficient murine model. Circulation 105:861–867

    Google Scholar 

  77. Koren O, Spor A, Felin J et al (2010) Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci U S A 108(Suppl 1):4592–4598

    Google Scholar 

  78. Haug MC, Tanner SA, Lacroix C et al (2011) Monitoring horizontal antibiotic resistance gene transfer in a colonic fermentation model. FEMS Microbiol Ecol 78:210–219

    CAS  Google Scholar 

  79. Nelson KE, Weinstock GM, Highlander SK et al (2010) A catalog of reference genomes from the human microbiome. Science 328:994–999

    CAS  Google Scholar 

  80. Methe BA, Nelson KE, Pop M et al (2012) A framework for human microbiome research. Nature 486:215–221

    CAS  Google Scholar 

  81. Park J, Kerner A, Burns MA et al (2011) Microdroplet-enabled highly parallel co-cultivation of microbial communities. PLoS One 6:e17019

    CAS  Google Scholar 

  82. Bollmann A, Lewis K, Epstein SS (2007) Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Appl Environ Microbiol 73:6386–6390

    CAS  Google Scholar 

  83. Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721

    CAS  Google Scholar 

  84. Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58:563–602

    CAS  Google Scholar 

  85. Wirth R, Friesenegger A, Fiedler S (1989) Transformation of various species of gram-negative bacteria belonging to 11 different genera by electroporation. Mol Gen Genet 216:175–177

    CAS  Google Scholar 

  86. Sanford JC, Smith FD, Russell JA (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol 217:483–509

    CAS  Google Scholar 

  87. Wyber JA, Andrews J, D’Emanuele A (1997) The use of sonication for the efficient delivery of plasmid DNA into cells. Pharm Res 14:750–756

    CAS  Google Scholar 

  88. Swords WE (2003) Chemical transformation of E. coli. Methods Mol Biol 235:49–53

    CAS  Google Scholar 

  89. Thomson AM, Flint HJ (1989) Electroporation induced transformation of Bacteroides ruminicola and Bacteroides uniformis by plasmid DNA. FEMS Microbiol Lett 52:101–104

    CAS  Google Scholar 

  90. Calvin NM, Hanawalt PC (1988) High-efficiency transformation of bacterial cells by electroporation. J Bacteriol 170:2796–2801

    CAS  Google Scholar 

  91. Goodman AL, McNulty NP, Zhao Y et al (2009) Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6:279–289

    CAS  Google Scholar 

  92. Kleckner N (1981) Transposable elements in prokaryotes. Annu Rev Genet 15:341–404

    CAS  Google Scholar 

  93. Goodman AL, Wu M, Gordon JI (2011) Identifying microbial fitness determinants by insertion sequencing using genome-wide transposon mutant libraries. Nat Protoc 6:1969–1980

    CAS  Google Scholar 

  94. van Opijnen T, Bodi KL, Camilli A (2009) Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods 6:767–772

    Google Scholar 

  95. Gawronski JD, Wong SM, Giannoukos G et al (2009) Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proc Natl Acad Sci U S A 106:16422–16427

    CAS  Google Scholar 

  96. Langridge GC, Phan MD, Turner DJ et al (2009) Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res 19:2308–2316

    CAS  Google Scholar 

  97. Sommer MO, Dantas G, Church GM (2009) Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325:1128–1131

    CAS  Google Scholar 

  98. Warner JR, Reeder PJ, Karimpour-Fard A et al (2010) Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nat Biotechnol 28:856–862

    CAS  Google Scholar 

  99. Sandoval NR, Kim JY, Glebes TY et al (2012) Strategy for directing combinatorial genome engineering in Escherichia coli. Proc Natl Acad Sci U S A 109:10540–10545

    CAS  Google Scholar 

  100. Wang HH, Isaacs FJ, Carr PA et al (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–898

    CAS  Google Scholar 

  101. Wang HH, Church GM (2011) Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering. Methods Enzymol 498:409–426

    CAS  Google Scholar 

  102. Wang HH, Kim H, Cong L et al (2012) Genome-scale promoter engineering by coselection MAGE. Nat Methods 9:591–593

    Google Scholar 

  103. Carr PA, Wang HH, Sterling B et al (2012) Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection. Nucleic Acids Res 40:e132

    CAS  Google Scholar 

  104. Sharan SK, Thomason LC, Kuznetsov SG et al (2009) Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc 4:206–223

    CAS  Google Scholar 

  105. Isaacs FJ, Carr PA, Wang HH et al (2011) Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333:348–353

    CAS  Google Scholar 

  106. Swingle B, Markel E, Costantino N et al (2010) Oligonucleotide recombination in Gram-negative bacteria. Mol Microbiol 75:138–148

    CAS  Google Scholar 

  107. van Pijkeren J-P, Britton RA (2012) High efficiency recombineering in lactic acid bacteria. Nucleic Acids Res 40:e76

    Google Scholar 

  108. Swingle B, Bao Z, Markel E et al (2010) Recombineering using RecTE from Pseudomonas syringae. Appl Environ Microbiol 76:4960–4968

    CAS  Google Scholar 

  109. van Kessel JC, Hatfull GF (2007) Recombineering in Mycobacterium tuberculosis. Nat Methods 4:147–152

    Google Scholar 

  110. Sonnenburg JL, Angenent LT, Gordon JI (2004) Getting a grip on things: how do communities of bacterial symbionts become established in our intestine? Nat Immunol 5:569–573

    CAS  Google Scholar 

  111. Faith JJ, McNulty NP, Rey FE et al (2011) Predicting a human gut microbiota’s response to diet in gnotobiotic mice. Science 333:101–104

    CAS  Google Scholar 

  112. Hosoda K, Suzuki S, Yamauchi Y et al (2011) Cooperative adaptation to establishment of a synthetic bacterial mutualism. PLoS One 6:e17105

    CAS  Google Scholar 

  113. Shou W, Ram S, Vilar JM (2007) Synthetic cooperation in engineered yeast populations. Proc Natl Acad Sci U S A 104:1877–1882

    CAS  Google Scholar 

  114. Wintermute EH, Silver PA (2010) Emergent cooperation in microbial metabolism. Mol Syst Biol 6:407

    Google Scholar 

  115. Mee JM, Wang HH (2012) Engineering ecosystems and synthetic ecologies. Mol Biosyst 8:2470–2483

    CAS  Google Scholar 

  116. Saeidi N, Wong CK, Lo TM et al (2011) Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Mol Syst Biol 7:521

    Google Scholar 

  117. Duan F, March JC (2010) Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model. Proc Natl Acad Sci U S A 107:11260–11264

    CAS  Google Scholar 

  118. Steidler L (2000) Treatment of murine colitis by lactococcus lactis secreting interleukin-10. Science 289:1352–1355

    CAS  Google Scholar 

  119. Steidler L, Rottiers P, Coulie B (2009) Actobiotics as a novel method for cytokine delivery. Ann N Y Acad Sci 1182:135–145

    CAS  Google Scholar 

  120. Duncan SH, Scott KP, Ramsay AG et al (2003) Effects of alternative dietary substrates on competition between human colonic bacteria in an anaerobic fermentor system. Appl Environ Microbiol 69:1136–1142

    CAS  Google Scholar 

  121. Leitch ECM, Walker AW, Duncan SH et al (2007) Selective colonization of insoluble substrates by human faecal bacteria. Environ Microbiol 9:667–679

    Google Scholar 

  122. Macfarlane GT, Hay S, Gibson GR (1989) Influence of mucin on glycosidase, protease and arylamidase activities of human gut bacteria grown in a 3-stage continuous culture system. J Appl Bacteriol 66:407–417

    CAS  Google Scholar 

  123. Molly K, Woestyne M, Verstraete W (1993) Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl Microbiol Biotechnol 39:254–258

    CAS  Google Scholar 

  124. Possemiers S, Verthé K, Uyttendaele S et al (2004) PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol 49:495–507

    CAS  Google Scholar 

  125. Pratten J (2007) Growing oral biofilms in a constant depth film fermentor (CDFF). Curr Protoc Microbiol Chapter 1, Unit 1B.5

    Google Scholar 

  126. Ready D (2002) Composition and antibiotic resistance profile of microcosm dental plaques before and after exposure to tetracycline. J Antimicrob Chemother 49:769–775

    CAS  Google Scholar 

  127. Roberts AP, Pratten J, Wilson M et al (1999) Transfer of a conjugative transposon, Tn5397 in a model oral biofilm. FEMS Microbiol Lett 177:63–66

    CAS  Google Scholar 

  128. Roberts AP, Cheah G, Ready D et al (2001) Transfer of Tn916-like elements in microcosm dental plaques. Antimicrob Agents Chemother 45:2943–2946

    CAS  Google Scholar 

  129. Kim HJ, Huh D, Hamilton G et al (2012) Human Gut-on-a-Chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12:2165–2174

    CAS  Google Scholar 

  130. Trosvik P, Rudi K, Strætkvern KO et al (2010) Web of ecological interactions in an experimental gut microbiota. Environ Microbiol 12:2677–2687

    CAS  Google Scholar 

  131. Foster JS, Kolenbrander PE (2004) Development of a multispecies oral bacterial community in a saliva-conditioned flow cell. Appl Environ Microbiol 70:4340

    CAS  Google Scholar 

  132. Doucet-Populaire F, Trieu-Cuot P, Dosbaa I et al (1991) Inducible transfer of conjugative transposon Tn1545 from Enterococcus faecalis to Listeria monocytogenes in the digestive tracts of gnotobiotic mice. Antimicrob Agents Chemother 35:185–187

    CAS  Google Scholar 

  133. Launay A, Ballard SA, Johnson PDR et al (2006) Transfer of vancomycin resistance transposon Tn1549 from clostridium symbiosum to Enterococcus spp. in the gut of gnotobiotic mice. Antimicrob Agents Chemother 50:1054

    CAS  Google Scholar 

  134. Turnbaugh PJ, Ridaura VK, Faith JJ et al (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14

    Google Scholar 

  135. Rawls JF, Mahowald MA, Ley RE et al (2006) Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127:423–433

    CAS  Google Scholar 

  136. Sellon RK, Tonkonogy S, Schultz M et al (1998) Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun 66:5224–5231

    CAS  Google Scholar 

  137. Lalla E, Lamster IB, Hofmann MA et al (2003) Oral infection with a periodontal pathogen accelerates early atherosclerosis in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 23:1405–1411

    CAS  Google Scholar 

  138. Caricilli AM, Picardi PK, de Abreu LL et al (2011) Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice. PLoS Biol 9:e1001212

    CAS  Google Scholar 

  139. Vijay-Kumar M, Aitken JD, Carvalho FA et al (2010) Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328:228–231

    CAS  Google Scholar 

  140. Hapfelmeier S, Hardt W-D (2005) A mouse model for S. typhimurium-induced enterocolitis. Trends Microbiol 13:497–503

    CAS  Google Scholar 

  141. Deng W, Vallance BA, Li Y et al (2003) Citrobacter rodentium translocated intimin receptor (Tir) is an essential virulence factor needed for actin condensation, intestinal colonization and colonic hyperplasia in mice. Mol Microbiol 48:95–115

    CAS  Google Scholar 

  142. Newman JV, Zabel BA, Jha SS et al (1999) Citrobacter rodentium espB is necessary for signal transduction and for infection of laboratory mice. Infect Immun 67:6019–6025

    CAS  Google Scholar 

  143. Alex P, Zachos NC, Nguyen T et al (2009) Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflamm Bowel Dis 15:341–352

    Google Scholar 

  144. Oz HS, Puleo DA (2011) Animal models for periodontal disease. J Biomed Biotechnol 2011:1–8

    Google Scholar 

  145. Naglik JR, Fidel PL, Odds FC (2008) Animal models of mucosal Candida infection. FEMS Microbiol Lett 283:129–139

    CAS  Google Scholar 

  146. Mcbride BC, van der Hoeven JS (1981) Role of interbacterial adherence in colonization of the oral cavities of gnotobiotic rats infected with Streptococcus mutans and Veillonella alcalescens. Infect Immun 33:467–472

    CAS  Google Scholar 

  147. Ma M, Rey FE, Seedorf H et al (2009) Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc Natl Acad Sci U S A 106:5859–5864

    Google Scholar 

  148. Sonnenburg JL, Chen CTL, Gordon JI (2006) Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLoS Biol 4:e413

    Google Scholar 

  149. Lewis NE, Nagarajan H, Palsson BO (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 10:291–305

    CAS  Google Scholar 

  150. Zomorrodi AR, Maranas CD (2012) OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput Biol 8:e1002363

    CAS  Google Scholar 

  151. Mahadevan R, Edwards JS, Doyle FJ 3rd (2002) Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 83:1331–1340

    CAS  Google Scholar 

  152. Greenblum S, Turnbaugh PJ, Borenstein E (2012) Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci U S A 109:594–599

    CAS  Google Scholar 

  153. Zhuang K, Izallalen M, Mouser P et al (2011) Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J 5:305–316

    Google Scholar 

  154. Taffs R, Aston JE, Brileya K et al (2009) In silico approaches to study mass and energy flows in microbial consortia: a syntrophic case study. BMC Syst Biol 3:114

    Google Scholar 

  155. Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484

    CAS  Google Scholar 

  156. Rohlke F, Surawicz CM, Stollman N (2010) Fecal flora reconstitution for recurrent Clostridium difficile infection: results and methodology. J Clin Gastroenterol 44:567–570

    Google Scholar 

  157. Miele E, Pascarella F, Giannetti E et al (2009) Effect of a probiotic preparation (VSL#3) on induction and maintenance of remission in children with ulcerative colitis. Am J Gastroenterol 104:437–443

    CAS  Google Scholar 

  158. Gionchetti P, Rizzello F, Helwig U et al (2003) Prophylaxis of pouchitis onset with probiotic therapy: a double-blind, placebo-controlled trial. Gastroenterology 124:1202–1209

    Google Scholar 

  159. Mimura T, Rizzello F, Helwig U et al (2004) Once daily high dose probiotic therapy (VSL#3) for maintaining remission in recurrent or refractory pouchitis. Gut 53:108–114

    CAS  Google Scholar 

  160. Culligan EP, Hill C, Sleator RD (2009) Probiotics and gastrointestinal disease: successes, problems and future prospects. Gut Pathogens 1:19

    Google Scholar 

  161. Sartor RB (2004) Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology 126:1620–1633

    Google Scholar 

  162. Cronin M, Morrissey D, Rajendran S et al (2010) Orally administered bifidobacteria as vehicles for delivery of agents to systemic tumors. Mol Ther 18:1397–1407

    CAS  Google Scholar 

  163. Fu G-F, Li X, Hou Y-Y et al (2005) Bifidobacterium longum as an oral delivery system of endostatin for gene therapy on solid liver cancer. Cancer Gene Ther 12:133–140

    CAS  Google Scholar 

  164. Li X, Fu G-F, Fan Y-R et al (2003) Bifidobacterium adolescentis as a delivery system of endostatin for cancer gene therapy: selective inhibitor of angiogenesis and hypoxic tumor growth. Cancer Gene Ther 10:105–111

    CAS  Google Scholar 

  165. Duan F, Curtis KL, March JC (2008) Secretion of insulinotropic proteins by commensal bacteria: rewiring the gut to treat diabetes. Appl Environ Microbiol 74:7437–7438

    CAS  Google Scholar 

  166. Rao S, Hu S, McHugh L et al (2005) Toward a live microbial microbicide for HIV: commensal bacteria secreting an HIV fusion inhibitor peptide. Proc Natl Acad Sci U S A 102:11993–11998

    CAS  Google Scholar 

  167. Braat H, Rottiers P, Hommes DW et al (2006) A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol 4:754–759

    CAS  Google Scholar 

  168. Degnan FH (2008) The US Food and Drug Administration and probiotics: regulatory categorization. Clin Infect Dis 46(Suppl 2):S133–S136, discussion S144–S151

    Google Scholar 

  169. Hong P-Y, Lee BW, Aw M et al (2010) Comparative analysis of fecal microbiota in infants with and without eczema. PLoS One 5:e9964

    Google Scholar 

  170. Saulnier DM, Riehle K, Mistretta T-A et al (2011) Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology 141:1782–1791

    CAS  Google Scholar 

  171. Claesson MJ, Cusack S, O’Sullivan O et al (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A 108(Suppl):4586–4591

    CAS  Google Scholar 

  172. Yatsunenko T, Rey FE, Manary MJ et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227

    CAS  Google Scholar 

  173. Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9:279–290

    CAS  Google Scholar 

  174. De Filippo C, Cavalieri D, Di Paola M et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107:14691–14696

    Google Scholar 

  175. Peterson DA, Frank DN, Pace NR et al (2008) Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe 3:417–427

    CAS  Google Scholar 

  176. Larsen N, Vogensen FK, van den Berg FWJ et al (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5:e9085

    Google Scholar 

  177. Kong HH, Oh J, Deming C et al (2012) Temporal shifts in the skin microbiome associated with atopic dermatitis disease flares and treatment. Genome Res 22(5):850–859

    CAS  Google Scholar 

  178. Gao Z, C-h T, Pei Z et al (2007) Molecular analysis of human forearm superficial skin bacterial biota. Proc Natl Acad Sci U S A 104:2927–2932

    CAS  Google Scholar 

  179. Keijser BJF, Zaura E, Huse SM et al (2008) Pyrosequencing analysis of the Oral Microflora of healthy adults. J Dent Res 87:1016–1020

    CAS  Google Scholar 

  180. Yang F, Zeng X, Ning K et al (2012) Saliva microbiomes distinguish caries-active from healthy human populations. ISME J 6:1–10

    Google Scholar 

  181. Phillips-Jones MK (1995) Introduction of recombinant DNA into Clostridium spp. Methods Mol Biol 47:227–235

    CAS  Google Scholar 

  182. Bouillaut L, McBride SM, Sorg JA (2011) Genetic manipulation of Clostridium difficile. Curr Protoc Microbiol Chapter 9, Unit 9A.2

    Google Scholar 

  183. Jennert KC, Tardif C, Young DI et al (2000) Gene transfer to Clostridium cellulolyticum ATCC 35319. Microbiology 146(Pt 12):3071–3080

    CAS  Google Scholar 

  184. Young DI, Evans VJ, Jefferies JR et al (1999) Genetic methods in clostridia. Method Microbiol 29:191–207

    CAS  Google Scholar 

  185. Cocconcelli PS, Ferrari E, Rossi F et al (1992) Plasmid transformation of Ruminococcus albus by means of high-voltage electroporation. FEMS Microbiol Lett 73:203–207

    CAS  Google Scholar 

  186. Damelin LH, Mavri-Damelin D, Klaenhammer TR et al (2010) Plasmid transduction using bacteriophage Phi(adh) for expression of CC chemokines by Lactobacillus gasseri ADH. Appl Environ Microbiol 76:3878–3885

    CAS  Google Scholar 

  187. Lizier M, Sarra PG, Cauda R et al (2010) Comparison of expression vectors in Lactobacillus reuteri strains. FEMS Microbiol Lett 308:8–15

    CAS  Google Scholar 

  188. Ljungh A, Wadström T (eds) (2009) Lactobacillus molecular biology: from genomics to probiotics. Caister Academic Press, Norfolk, UK

    Google Scholar 

  189. Sørvig E, Mathiesen G, Naterstad K et al (2005) High-level, inducible gene expression in Lactobacillus sakei and Lactobacillus plantarum using versatile expression vectors. Microbiology 151:2439–2449

    Google Scholar 

  190. Thompson K, Collins MA (1996) Improvement in electroporation efficiency for Lactobacillus plantarum by the inclusion of high concentrations of glycine in the growth medium. J Microbiol Methods 26:73–79

    CAS  Google Scholar 

  191. Shepard BD, Gilmore MS (1995) Electroporation and efficient transformation of Enterococcus faecalis grown in high concentrations of glycine. Methods Mol Biol 47:217–226

    CAS  Google Scholar 

  192. Holo H, Nes IF (1995) Transformation of Lactococcus by electroporation. Methods Mol Biol 47:195–199

    CAS  Google Scholar 

  193. Biswas I, Jha JK, Fromm N (2008) Shuttle expression plasmids for genetic studies in Streptococcus mutans. Microbiology 154:2275–2282

    CAS  Google Scholar 

  194. McLaughlin RE, Ferretti JJ (1995) Electrotransformation of Streptococci. Methods Mol Biol 47:185–193

    CAS  Google Scholar 

  195. Lee JC (1995) Electrotransformation of Staphylococci. Methods Mol Biol 47:209–216

    CAS  Google Scholar 

  196. Alexander JE, Andrew PW, Jones D et al (1990) Development of an optimized system for electroporation of Listeria species. Lett Appl Microbiol 10:179–181

    CAS  Google Scholar 

  197. Kuramitsu HK, Chi B, Ikegami A (2005) Genetic manipulation of Treponema denticola. Curr Protoc Microbiol Chapter 12, Unit 12B.12

    Google Scholar 

  198. Hyde JA, Weening EH, Skare JT (2011) Genetic transformation of borrelia burgdorferi. Curr Protoc Microbiol, Chapter 12, 1–17

    Google Scholar 

  199. Rosa P, Stevenson B, Tilly K (1999) Genetic methods in Borrelia and other spirochaetes. Method Microbiol 29:209–227

    CAS  Google Scholar 

  200. Mayo B, van Sinderen D (2010) Bifidobacteria: genomics and molecular aspects. Caister Academic Press, Norfolk, UK

    Google Scholar 

  201. Yeung MK, Kozelsky CS (1994) Transformation of Actinomyces spp. by a gram-negative broad-host-range plasmid. J Bacteriol 176:4173–4176

    CAS  Google Scholar 

  202. Miles R, Nicholas R (eds) (1998) Mycoplasma protocols, vol 104, Methods Mol Biol. Humana Press, Totowa, NJ

    Google Scholar 

  203. Sassetti CM, Boyd DH, Rubin EJ (2001) Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci U S A 98:12712–12717

    CAS  Google Scholar 

  204. Luijk NV, Stierli MP, Schwenninger SM (2002) Genetics and molecular biology of propionibacteria. Lait 82:45–57

    Google Scholar 

  205. Binet R, Maurelli AT (2009) Transformation and isolation of allelic exchange mutants of Chlamydia psittaci using recombinant DNA introduced by electroporation. Proc Natl Acad Sci U S A 106:292–297

    CAS  Google Scholar 

  206. Bélanger M, Rodrigues P, Progulske-Fox A (2007) Genetic manipulation of Porphyromonas gingivalis. Curr Protoc Microbiol Chapter 13, Unit 13C.12

    Google Scholar 

  207. Flint HJ, Martin JC, Thomson AM (2000) Prevotella bryantii, P. ruminicola and bacteroides strains. In: Eynard N, Teissié J (eds) Electrotransformation of bacteria. Springer, Heidelberg, pp 140–149

    Google Scholar 

  208. Nikolich MP, Salyers AA, Shoemaker NB (1994) Method and materials for introducing dna into prevotella ruminicola. US Patent 5322784, Jun 21, 1994

    Google Scholar 

  209. Bacic MK, Smith CJ (2008) Laboratory maintenance and cultivation of bacteroides species. Curr Protoc Microbiol Chapter 13, Unit 13C 11

    Google Scholar 

  210. Salyers AA, Shoemaker N, Cooper A et al (1999) Genetic methods for bacteroides species. Method Microbiol 29:229–249

    CAS  Google Scholar 

  211. Smith CJ (1995) Genetic transformation of Bacteroides spp. using electroporation. Methods Mol Biol 47:161–169

    CAS  Google Scholar 

  212. Kinder Haake S, Yoder S, Gerardo SH (2006) Efficient gene transfer and targeted mutagenesis in Fusobacterium nucleatum. Plasmid 55:27–38

    CAS  Google Scholar 

  213. Segal ED (1995) Electroporation of Helicobacter pylori. Methods Mol Biol 47:179–184

    CAS  Google Scholar 

  214. Taylor DE (1992) Genetics of campylobacter and helicobacter. Annu Rev Microbiol 46:35–64

    CAS  Google Scholar 

  215. Rachek LI, Hines A, Tucker AM et al (2000) Transformation of Rickettsia prowazekii to erythromycin resistance encoded by the Escherichia coli ereB gene. J Bacteriol 182:3289–3291

    CAS  Google Scholar 

  216. McQuiston JR, Schurig GG, Sriranganathan N et al (1995) Transformation of Brucella species with suicide and broad host-range plasmids. Methods Mol Biol 47:143–148

    CAS  Google Scholar 

  217. Scarlato V, Ricci S, Rappuoli R et al (1996) Genetic manipulation of bordetella. In: Adolph KW (ed) Microbial genome methods. CRC Press, Boca Raton, FL, pp 247–262

    Google Scholar 

  218. Bogdan JA, Minetti CA, Blake MS (2002) A one-step method for genetic transformation of non-piliated Neisseria meningitidis. J Microbiol Methods 49:97–101

    CAS  Google Scholar 

  219. Genco CA, Knapp JS, Clark VL (1984) Conjugation of plasmids of neisseria gonorrhoeae to other neisseria species: potential reservoirs for the β-lactamase plasmid. J Infect Dis 150:397–401

    CAS  Google Scholar 

  220. O’Dwyer CA, Langford PR, Kroll JS (2005) A novel neisserial shuttle plasmid: a useful new tool for meningococcal research. FEMS Microbiol Lett 251:143–147

    Google Scholar 

  221. Dennis JJ, Sokol PA (1995) Electrotransformation of Pseudomonas. Methods Mol Biol 47:125–133

    CAS  Google Scholar 

Download references

Acknowledgements

H.H.W. acknowledges the generous support from the National Institutes of Health Director’s Early Independence Award (grant 1DP5OD009172-01). S.J.Y. acknowledges support from the National Science Foundation Graduate Research Fellowship and the MIT Neurometrix Presidential Graduate Fellowship. G.M.C. acknowledges support from the Department of Energy Genomes to Life Center (Grant DE-FG02-02ER63445).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harris H. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yaung, S.J., Church, G.M., Wang, H.H. (2014). Recent Progress in Engineering Human-Associated Microbiomes. In: Sun, L., Shou, W. (eds) Engineering and Analyzing Multicellular Systems. Methods in Molecular Biology, vol 1151. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0554-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0554-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0553-9

  • Online ISBN: 978-1-4939-0554-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics