Skip to main content

In Vitro Models for Ototoxic Research

  • Protocol
  • First Online:
In Vitro Toxicology Systems

Abstract

Ototoxicity is the general term for drug-induced damage to the cochlea or the vestibular system resulting in hearing and balance deficits, respectively. The anticancer agent cisplatin and the aminoglycoside antibiotics represent the clinically most relevant ototoxins. Understanding the molecular mechanisms of their toxic side effects is important not only from a basic science point of view but also to pave the way for protective treatment and the development of less toxic pharmaceuticals. In vivo studies will remain the gold standard of ototoxicity research because an assessment of auditory function (“hearing”) and balance is only possible in the intact animal. Nevertheless, several in vitro systems have been proposed and successfully used for probing mechanisms and pharmacological interventions. We describe here the morphology and physiology of the inner ear and evaluate the strengths and weaknesses of the most widely used model systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forge A, Schacht J (2000) Aminoglycoside antibiotics. Audiol Neurootol 5(1):3–22

    CAS  PubMed  Google Scholar 

  2. Rizzi MD, Hirose K (2007) Aminoglycoside ototoxicity. Curr Opin Otolaryngol Head Neck Surg 15(5):352–357

    PubMed  Google Scholar 

  3. Fee WE Jr (1980) Aminoglycoside ototoxicity in the human. Laryngoscope 90((10 Pt 2 Suppl 24)):1–19

    PubMed  Google Scholar 

  4. Moore RD, Smith CR, Lietman PS (1984) Risk factors for the development of auditory toxicity in patients receiving aminoglycosides. J Infect Dis 149(1):23–30

    CAS  PubMed  Google Scholar 

  5. Lerner SA, Schmitt BA, Seligsohn R, Matz GJ (1986) Comparative study of ototoxicity and nephrotoxicity in patients randomly assigned to treatment with amikacin or gentamicin. Am J Med 80(6B):98–104

    CAS  PubMed  Google Scholar 

  6. Fausti SA, Henry JA, Schaffer HI, Olson DJ, Frey RH, McDonald WJ (1992) High-frequency audiometric monitoring for early detection of aminoglycoside ototoxicity. J Infect Dis 165(6):1026–1032

    CAS  PubMed  Google Scholar 

  7. Duggal P, Sarkar M (2007) Audiologic monitoring of multi-drug resistant tuberculosis patients on aminoglycoside treatment with long term follow-up. BMC Ear Nose Throat Disord 7:5

    PubMed Central  PubMed  Google Scholar 

  8. Benedetti Panici P, Greggi S, Scambia G, Baiocchi G, Lomonaco M, Conti G, Mancuso S (1993) Efficacy and toxicity of very high-dose cisplatin in advanced ovarian carcinoma: 4-year survival analysis and neurological follow-up. Int J Gynecol Cancer 3(1): 44–53

    PubMed  Google Scholar 

  9. Schacht J, Talaska AE, Rybak LP (2012) Cisplatin and aminoglycoside antibiotics: hearing loss and its prevention. Anat Rec (Hoboken) 295(11):1837–1850

    CAS  Google Scholar 

  10. Einar-Jon E, Trausti O, Asgeir H, Christian M, Thomas W, Mans M, Jon K, Hannes P (2011) Hearing impairment after platinum-based chemotherapy in childhood. Pediatr Blood Cancer 56(4):631–637

    PubMed  Google Scholar 

  11. Einarsson EJ, Petersen H, Wiebe T, Fransson PA, Grenner J, Magnusson M, Moell C (2010) Long term hearing degeneration after platinum-based chemotherapy in childhood. Int J Audiol 49(10):765–771

    PubMed  Google Scholar 

  12. Dallos P, Popper AN, Fay RR (1996) The cochlea, vol 8, vol IV, Springer handbook of auditory research. Springer, New York

    Google Scholar 

  13. Wangemann P (2006) Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol 576(Pt 1): 11–21

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Von Békésy G (1960) Experiments in hearing. R. E. Krieger, New York

    Google Scholar 

  15. Sellick PM, Patuzzi R, Johnstone BM (1982) Measurement of basilar membrane motion in the guinea pig using the Mossbauer technique. J Acoust Soc Am 72(1):131–141

    CAS  PubMed  Google Scholar 

  16. Fettiplace R, Hackney CM (2006) The sensory and motor roles of auditory hair cells. Nat Rev Neurosci 7(1):19–29

    CAS  PubMed  Google Scholar 

  17. Day BL, Fitzpatrick RC (2005) The vestibular system. Curr Biol 15(15):R583–R586

    CAS  PubMed  Google Scholar 

  18. Ding D, Allman BL, Salvi R (2012) Review: ototoxic characteristics of platinum antitumor drugs. Anat Rec (Hoboken) 295(11): 1851–1867

    CAS  Google Scholar 

  19. Matz GJ (1993) Aminoglycoside cochlear ototoxicity. Otolaryngol Clin North Am 26(5):705–712

    CAS  PubMed  Google Scholar 

  20. Hawkins JE Jr, Stebbins WC, Johnsson LG, Moody DB, Muraski A (1977) The patas monkey as a model for dihydrostreptomycin ototoxicity. Acta Otolaryngol 83(1–2):123–129

    PubMed  Google Scholar 

  21. Stebbins WC, Moody DB, Hawkins JE Jr, Johnsson LG, Norat MA (1987) The species-specific nature of the ototoxicity of dihydrostreptomycin in the patas monkey. Neurotoxicology 8(1):33–44

    CAS  PubMed  Google Scholar 

  22. Stebbins WC, Miller JM, Johnsson LG, Hawkins JE Jr (1969) Ototoxic hearing loss and cochlear pathology in the monkey. Ann Otol Rhinol Laryngol 78(5):1007–1025

    CAS  PubMed  Google Scholar 

  23. Tran Ba Huy P, Bernard P, Schacht J (1986) Kinetics of gentamicin uptake and release in the rat. Comparison of inner ear tissues and fluids with other organs. J Clin Invest 77(5):1492–1500

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Li H, Steyger PS (2011) Systemic aminoglycosides are trafficked via endolymph into cochlear hair cells. Sci Rep 1:159

    PubMed Central  PubMed  Google Scholar 

  25. Dulon D, Hiel H, Aurousseau C, Erre JP, Aran JM (1993) Pharmacokinetics of gentamicin in the sensory hair cells of the organ of Corti: rapid uptake and long term persistence. C R Acad Sci III 316(7):682–687

    CAS  PubMed  Google Scholar 

  26. Alharazneh A, Luk L, Huth M, Monfared A, Steyger PS, Cheng AG, Ricci AJ (2011) Functional hair cell mechanotransducer channels are required for aminoglycoside ototoxicity. PLoS One 6(7):e22347

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Imamura S, Adams JC (2003) Distribution of gentamicin in the guinea pig inner ear after local or systemic application. J Assoc Res Otolaryngol 4(2):176–195

    PubMed Central  PubMed  Google Scholar 

  28. Sha SH, Taylor R, Forge A, Schacht J (2001) Differential vulnerability of basal and apical hair cells is based on intrinsic susceptibility to free radicals. Hear Res 155(1–2):1–8

    CAS  PubMed  Google Scholar 

  29. Hawkins E Jr (1973) Ototoxic mechanisms. A working hypothesis. Audiology 12(5): 383–393

    PubMed  Google Scholar 

  30. Ruedi L, Furrer W, Luthy F, Nager G, Tschirren B (1952) Further observations concerning the toxic effects of streptomycin and quinine on the auditory organ of guinea pigs. Laryngoscope 62(4):333–351

    CAS  PubMed  Google Scholar 

  31. Sone M, Schachern PA, Paparella MM (1998) Loss of spiral ganglion cells as primary manifestation of aminoglycoside ototoxicity. Hear Res 115(1–2):217–223

    CAS  PubMed  Google Scholar 

  32. Lindeman HH (1969) Regional differences in sensitivity of the vestibular sensory epithelia to ototoxic antibiotics. Acta Otolaryngol 67(2):177–189

    CAS  PubMed  Google Scholar 

  33. Black FO, Pesznecker SC (1993) Vestibular ototoxicity. Clinical considerations. Otolaryngol Clin North Am 26(5):713–736

    CAS  PubMed  Google Scholar 

  34. Taguchi T, Nazneen A, Abid MR, Razzaque MS (2005) Cisplatin-associated nephrotoxicity and pathological events. Contrib Nephrol 148:107–121

    CAS  PubMed  Google Scholar 

  35. Hinojosa R, Riggs LC, Strauss M, Matz GJ (1995) Temporal bone histopathology of cisplatin ototoxicity. Am J Otol 16(6):731–740

    CAS  PubMed  Google Scholar 

  36. Poirrier AL, Van den Ackerveken P, Kim TS, Vandenbosch R, Nguyen L, Lefebvre PP, Malgrange B (2010) Ototoxic drugs: difference in sensitivity between mice and guinea pigs. Toxicol Lett 193(1):41–49

    CAS  PubMed  Google Scholar 

  37. Ravi R, Somani SM, Rybak LP (1995) Mechanism of cisplatin ototoxicity: antioxidant system. Pharmacol Toxicol 76(6):386–394

    CAS  PubMed  Google Scholar 

  38. Klis SF, O’Leary SJ, Hamers FP, De Groot JC, Smoorenburg GF (2000) Reversible cisplatin ototoxicity in the albino guinea pig. Neuroreport 11(3):623–626

    CAS  PubMed  Google Scholar 

  39. Yorgason JG, Fayad JN, Kalinec F (2006) Understanding drug ototoxicity: molecular insights for prevention and clinical management. Expert Opin Drug Saf 5(3):383–399

    CAS  PubMed  Google Scholar 

  40. Yorgason JG, Kalinec GM, Luxford WM, Warren FM, Kalinec F (2010) Acetaminophen ototoxicity after acetaminophen/hydrocodone abuse: evidence from two parallel in vitro mouse models. Otolaryngol Head Neck Surg 142(6):814–819, 819.e1–819.e2

    PubMed  Google Scholar 

  41. Rybak LP, Ramkumar V (2007) Ototoxicity. Kidney Int 72(8):931–935

    CAS  PubMed  Google Scholar 

  42. Rybak LP, Mukherjea D, Jajoo S, Kaur T, Ramkumar V (2012) siRNA-mediated knock-down of NOX3: therapy for hearing loss? Cell Mol Life Sci 69(14):2429–2434

    CAS  PubMed  Google Scholar 

  43. Kaur T, Mukherjea D, Sheehan K, Jajoo S, Rybak LP, Ramkumar V (2011) Short interfering RNA against STAT1 attenuates cisplatin-induced ototoxicity in the rat by suppressing inflammation. Cell Death Dis 2:e180

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Schacht J, Hawkins JE (2006) Sketches of otohistory. Part 11: ototoxicity: drug-induced hearing loss. Audiol Neurootol 11(1):1–6

    PubMed  Google Scholar 

  45. Lue AJ, Brownell WE (1999) Salicylate induced changes in outer hair cell lateral wall stiffness. Hear Res 135(1–2):163–168

    CAS  PubMed  Google Scholar 

  46. Shehata WE, Brownell WE, Dieler R (1991) Effects of salicylate on shape, electromotility and membrane characteristics of isolated outer hair cells from guinea pig cochlea. Acta Otolaryngol 111(4):707–718

    CAS  PubMed  Google Scholar 

  47. Dieler R, Shehata-Dieler WE, Brownell WE (1991) Concomitant salicylate-induced alterations of outer hair cell subsurface cisternae and electromotility. J Neurocytol 20(8): 637–653

    CAS  PubMed  Google Scholar 

  48. Tuzel IH (1981) Comparison of adverse reactions to bumetanide and furosemide. J Clin Pharmacol 21(11–12 Pt 2):615–619

    CAS  PubMed  Google Scholar 

  49. West BA, Brummett RE, Himes DL (1973) Interaction of kanamycin and ethacrynic acid. Severe cochlear damage in guinea pigs. Arch Otolaryngol 98(1):32–37

    CAS  PubMed  Google Scholar 

  50. Taylor RR, Nevill G, Forge A (2008) Rapid hair cell loss: a mouse model for cochlear lesions. J Assoc Res Otolaryngol 9(1):44–64

    PubMed Central  PubMed  Google Scholar 

  51. Heffner RS (2004) Primate hearing from a mammalian perspective. Anat Rec A: Discov Mol Cell Evol Biol 281(1):1111–1122

    Google Scholar 

  52. Stebbins WC, Clark WW, Pearson RD, Weiland NG (1973) Noise- and drug-induced hearing loss in monkeys. Adv Otorhinolaryngol 20:42–63

    CAS  PubMed  Google Scholar 

  53. Shepherd RK, Xu SA, Clark GM (1994) Partial hearing loss in the macaque following the co-administration of kanamycin and ethacrynic acid. Hear Res 72(1–2):89–98

    CAS  PubMed  Google Scholar 

  54. Carey JP, Cooper T, Jallo GI, Carson BS, Guarnieri M (2005) Ototoxicity of carboplatin delivered locally in a monkey brainstem. Int J Toxicol 24(6):443–449

    CAS  PubMed  Google Scholar 

  55. Henry KR, Chole RA, McGinn MD, Frush DP (1981) Increased ototoxicity in both young and old mice. Arch Otolaryngol 107(2):92–95

    CAS  PubMed  Google Scholar 

  56. Wu WJ, Sha SH, McLaren JD, Kawamoto K, Raphael Y, Schacht J (2001) Aminoglycoside ototoxicity in adult CBA, C57BL and BALB mice and the Sprague-Dawley rat. Hear Res 158(1–2):165–178

    CAS  PubMed  Google Scholar 

  57. Mount RJ, Takeno S, Wake M, Harrison RV (1995) Carboplatin ototoxicity in the chinchilla: lesions of the vestibular sensory epithelium. Acta Otolaryngol Suppl 519:60–65

    CAS  PubMed  Google Scholar 

  58. Wake M, Takeno S, Ibrahim D, Harrison R, Mount R (1993) Carboplatin ototoxicity: an animal model. J Laryngol Otol 107(7): 585–589

    CAS  PubMed  Google Scholar 

  59. Lautermann J, Song B, McLaren J, Schacht J (1995) Diet is a risk factor in cisplatin ototoxicity. Hear Res 88(1–2):47–53

    CAS  PubMed  Google Scholar 

  60. Lautermann J, McLaren J, Schacht J (1995) Glutathione protection against gentamicin ototoxicity depends on nutritional status. Hear Res 86(1–2):15–24

    CAS  PubMed  Google Scholar 

  61. Fischer FP, Gleich O, Köppl C, Manley GA (2000) Comparative anatomy and physiology of hearing organs. In: Manley GA (ed) Auditory worlds: sensory analysis and perception in animals and man, 1st edn. WILEY, Weinheim

    Google Scholar 

  62. Gleich O, Manley GA (2000) Comparative hearing: birds and reptiles. In: Dooling RJ, Fay RR, Popper AN (eds) Comparative hearing: birds and reptiles, Volume 13. Springer handbook of auditory research. Springer, New York

    Google Scholar 

  63. Frenz DA, Yoo H, Liu W (1998) Basilar papilla explants: a model to study hair cell regeneration-repair and protection. Acta Otolaryngol 118(5):651–659

    CAS  PubMed  Google Scholar 

  64. Slattery EL, Warchol ME (2010) Cisplatin ototoxicity blocks sensory regeneration in the avian inner ear. J Neurosci 30(9):3473–3481

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Flock A (1964) Electron microscopic and electrophysiological studies on the lateral line canal organ. Acta Otolaryngol Suppl 199:1–90

    Google Scholar 

  66. Wersaell J, Flock A (1964) Suppression and restoration of the microphonic output from the lateral line organ after local application of streptomycin. Life Sci 3:1151–1155

    CAS  PubMed  Google Scholar 

  67. Kaus S (1992) The influence of calcium on the ototoxicity of aminoglycosides. Acta Otolaryngol 112(1):83–87

    CAS  PubMed  Google Scholar 

  68. Ou HC, Santos F, Raible DW, Simon JA, Rubel EW (2010) Drug screening for hearing loss: using the zebrafish lateral line to screen for drugs that prevent and cause hearing loss. Drug Discov Today 15(7–8):265–271

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Williams JA, Holder N (2000) Cell turnover in neuromasts of zebrafish larvae. Hear Res 143(1–2):171–181

    CAS  PubMed  Google Scholar 

  70. Ou HC, Raible DW, Rubel EW (2007) Cisplatin-induced hair cell loss in zebrafish (Danio rerio) lateral line. Hear Res 233(1–2): 46–53

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Chiu LL, Cunningham LL, Raible DW, Rubel EW, Ou HC (2008) Using the zebrafish lateral line to screen for ototoxicity. J Assoc Res Otolaryngol 9(2):178–190

    PubMed Central  PubMed  Google Scholar 

  72. Brand Y, Setz C, Levano S, Listyo A, Chavez E, Pak K, Sung M, Radojevic V, Ryan AF, Bodmer D (2011) Simvastatin protects auditory hair cells from gentamicin-induced toxicity and activates Akt signaling in vitro. BMC Neurosci 12:114

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Ou HC, Cunningham LL, Francis SP, Brandon CS, Simon JA, Raible DW, Rubel EW (2009) Identification of FDA-approved drugs and bioactives that protect hair cells in the zebrafish (Danio rerio) lateral line and mouse (Mus musculus) utricle. J Assoc Res Otolaryngol 10(2):191–203

    PubMed Central  PubMed  Google Scholar 

  74. Owens KN, Santos F, Roberts B, Linbo T, Coffin AB, Knisely AJ, Simon JA, Rubel EW, Raible DW (2008) Identification of genetic and chemical modulators of zebrafish mechanosensory hair cell death. PLoS Genet 4(2):e1000020

    PubMed Central  PubMed  Google Scholar 

  75. Matt T, Ng CL, Lang K, Sha SH, Akbergenov R, Shcherbakov D, Meyer M, Duscha S, Xie J, Dubbaka SR, Perez-Fernandez D, Vasella A, Ramakrishnan V, Schacht J, Bottger EC (2012) Dissociation of antibacterial activity and aminoglycoside ototoxicity in the 4-monosubstituted 2-deoxystreptamine apramycin. Proc Natl Acad Sci U S A 109(27): 10984–10989

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Karasawa T, Wang Q, Fu Y, Cohen DM, Steyger PS (2008) TRPV4 enhances the cellular uptake of aminoglycoside antibiotics. J Cell Sci 121(Pt 17):2871–2879

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Chen FQ, Hill K, Guan YJ, Schacht J, Sha SH (2012) Activation of apoptotic pathways in the absence of cell death in an inner-ear immortomouse cell line. Hear Res 284(1–2): 33–41

    PubMed Central  PubMed  Google Scholar 

  78. Dinh C, Bas E, Dinh J, Vu L, Gupta C, Van De Water TR (2013) Short interfering RNA against bax attenuates TNFalpha-induced ototoxicity in rat organ of Corti explants. Otolaryngol Head Neck Surg 148(5): 834–840

    PubMed  Google Scholar 

  79. Lindl T, Gstraunthaler G (2008) Zell- und Gewebekultur. Von den Grundlagen zur Laborbank, 6th edn. Springer, Heidelberg

    Google Scholar 

  80. Jat PS, Noble MD, Ataliotis P, Tanaka Y, Yannoutsos N, Larsen L, Kioussis D (1991) Direct derivation of conditionally immortal cell lines from an H-2Kb-tsA58 transgenic mouse. Proc Natl Acad Sci U S A 88(12):5096–5100

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Rivolta MN, Holley MC (2002) Cell lines in inner ear research. J Neurobiol 53(2): 306–318

    PubMed  Google Scholar 

  82. Kalinec F, Kalinec G, Boukhvalova M, Kachar B (1999) Establishment and characterization of conditionally immortalized organ of corti cell lines. Cell Biol Int 23(3):175–184

    CAS  PubMed  Google Scholar 

  83. Rivolta MN, Grix N, Lawlor P, Ashmore JF, Jagger DJ, Holley MC (1998) Auditory hair cell precursors immortalized from the mammalian inner ear. Proc Biol Sci 265(1406):1595–1603

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Lawlor P, Marcotti W, Rivolta MN, Kros CJ, Holley MC (1999) Differentiation of mammalian vestibular hair cells from conditionally immortal, postnatal supporting cells. J Neurosci 19(21):9445–9458

    CAS  PubMed  Google Scholar 

  85. Kalinec GM, Webster P, Lim DJ, Kalinec F (2003) A cochlear cell line as an in vitro system for drug ototoxicity screening. Audiol Neurootol 8(4):177–189

    CAS  PubMed  Google Scholar 

  86. Previati M, Lanzoni I, Astolfi L, Fagioli F, Vecchiati G, Pagnoni A, Martini A, Capitani S (2007) Cisplatin cytotoxicity in organ of Corti-derived immortalized cells. J Cell Biochem 101(5):1185–1197

    CAS  PubMed  Google Scholar 

  87. Bertolaso L, Martini A, Bindini D, Lanzoni I, Parmeggiani A, Vitali C, Kalinec G, Kalinec F, Capitani S, Previati M (2001) Apoptosis in the OC-k3 immortalized cell line treated with different agents. Audiology 40(6): 327–335

    CAS  PubMed  Google Scholar 

  88. Cederroth CR (2012) Loss of aminoglycoside sensitivity in HEI-OC1 cells? Hear Res 292(1–2):83–85, author response pg 6

    PubMed  Google Scholar 

  89. Forge A, Li L (2000) Apoptotic death of hair cells in mammalian vestibular sensory epithelia. Hear Res 139(1–2):97–115

    CAS  PubMed  Google Scholar 

  90. Cunningham LL, Cheng AG, Rubel EW (2002) Caspase activation in hair cells of the mouse utricle exposed to neomycin. J Neurosci 22(19):8532–8540

    CAS  PubMed  Google Scholar 

  91. Jiang H, Sha SH, Schacht J (2005) NF-kappaB pathway protects cochlear hair cells from aminoglycoside-induced ototoxicity. J Neurosci Res 79(5):644–651

    CAS  PubMed  Google Scholar 

  92. Mammano F, Ashmore JF (1996) Differential expression of outer hair cell potassium currents in the isolated cochlea of the guinea-pig. J Physiol 496(Pt 3):639–646

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Leitner MG, Halaszovich CR, Oliver D (2011) Aminoglycosides inhibit KCNQ4 channels in cochlear outer hair cells via depletion of phosphatidylinositol(4,5)bisphosphate. Mol Pharmacol 79(1):51–60

    CAS  PubMed  Google Scholar 

  94. Myrdal SE, Johnson KC, Steyger PS (2005) Cytoplasmic and intra-nuclear binding of gentamicin does not require endocytosis. Hear Res 204(1–2):156–169

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Winburn IC, Gunatunga K, McKernan RD, Walker RJ, Sammut IA, Harrison JC (2012) Cell damage following carbon monoxide releasing molecule exposure: implications for therapeutic applications. Basic Clin Pharmacol Toxicol 111(1):31–41

    CAS  PubMed  Google Scholar 

  96. Schaechinger TJ, Oliver D (2007) Nonmammalian orthologs of prestin (SLC26A5) are electrogenic divalent/chloride anion exchangers. Proc Natl Acad Sci U S A 104(18):7693–7698

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Lewinska A, Wnuk M, Slota E, Bartosz G (2007) Total anti-oxidant capacity of cell culture media. Clin Exp Pharmacol Physiol 34(8):781–786

    CAS  PubMed  Google Scholar 

  98. Sha SH, Chen FQ, Schacht J (2009) Activation of cell death pathways in the inner ear of the aging CBA/J mouse. Hear Res 254(1–2):92–99

    PubMed Central  PubMed  Google Scholar 

  99. Sha SH, Kanicki A, Dootz G, Talaska AE, Halsey K, Dolan D, Altschuler R, Schacht J (2008) Age-related auditory pathology in the CBA/J mouse. Hear Res 243(1–2):87–94

    PubMed Central  PubMed  Google Scholar 

  100. Jiang H, Sha SH, Schacht J (2006) Rac/Rho pathway regulates actin depolymerization induced by aminoglycoside antibiotics. J Neurosci Res 83(8):1544–1551

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Zhao H, Avenarius MR, Gillespie PG (2012) Improved biolistic transfection of hair cells. PLoS One 7(10):e46765

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Belyantseva IA (2009) Helios gene gun-mediated transfection of the inner ear sensory epithelium. Methods Mol Biol 493: 103–123

    CAS  PubMed  Google Scholar 

  103. Gubbels SP, Woessner DW, Mitchell JC, Ricci AJ, Brigande JV (2008) Functional auditory hair cells produced in the mammalian cochlea by in utero gene transfer. Nature 455(7212): 537–541

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Zheng JL, Gao WQ (2000) Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears. Nat Neurosci 3(6):580–586

    CAS  PubMed  Google Scholar 

  105. Driver EC, Kelley MW (2010) Transfection of mouse cochlear explants by electroporation. Curr Protoc Neurosci Chapter 4:Unit 4.34.1–10

    Google Scholar 

  106. Holt JR (2002) Viral-mediated gene transfer to study the molecular physiology of the Mammalian inner ear. Audiol Neurootol 7(3):157–160

    CAS  PubMed  Google Scholar 

  107. Luebke AE, Rova C, Von Doersten PG, Poulsen DJ (2009) Adenoviral and AAV-mediated gene transfer to the inner ear: role of serotype, promoter, and viral load on in vivo and in vitro infection efficiencies. Adv Otorhinolaryngol 66:87–98

    CAS  PubMed  Google Scholar 

  108. Zheng G, Zhu K, Wei J, Jin Z, Duan M (2011) Adeno-associated viral vector-mediated expression of NT4-ADNF-9 fusion gene protects against aminoglycoside-induced auditory hair cell loss in vitro. Acta Otolaryngol 131(2):136–141

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Photos in Figs. 2 and 3 by courtesy of Gao Wei, M.D., Kresge Hearing Research Institute. The authors thank Bettina U. Wilke and Murielle Kluge for their help with the illustrations and for careful reading of the manuscript. This work was supported by research grant 17/2013 MR of the University Medical Center Giessen and Marburg (UKGM) to M.G.L. J.S’s research on ototoxins is supported by grant DC 003685 from the National Institute for Deafness and Communication Disorders, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Leitner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schacht, J., Leitner, M.G. (2014). In Vitro Models for Ototoxic Research. In: Bal-Price, A., Jennings, P. (eds) In Vitro Toxicology Systems. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0521-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0521-8_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0520-1

  • Online ISBN: 978-1-4939-0521-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics