Skip to main content

Translational Biomarkers, In Vitro and In Vivo

  • Protocol
  • First Online:
In Vitro Toxicology Systems

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Current clinical and preclinical biomarkers suffer from lack of target organ specificity, sensitivity issues, and poor mechanistic insight. There is therefore a lot of interest in the field of biomarker discovery to overcome these issues, for both clinical and preclinical applications. In this chapter we set out to demonstrate how in vitro techniques are an indispensable tool in the development and discovery of novel mechanistically based biomarkers. We provide examples of several novel biomarkers which have been either discovered in vitro or where such systems have been used to elucidate key mechanistic information. Many of these biomarkers are more than innocent bystanders leaked into the surrounding tissue, with most highly implicated in cell and tissue survival as well as tissue differentiation. These new biomarkers will be not only useful for current preclinical and clinical applications but also advantageous in the development of better in vitro systems in order to reduce or replace animal testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. White WI (1991) A new look at the role of urinalysis in the history of diagnostic medicine. Clin Chem 37(1):119–125

    CAS  PubMed  Google Scholar 

  2. Amacher DE (1998) Serum transaminase elevations as indicators of hepatic injury following the administration of drugs. Regul Toxicol Pharmacol 27(2):119–130. doi:10.1006/rtph.1998.1201

    CAS  PubMed  Google Scholar 

  3. Brooks JD (2012) Translational genomics: the challenge of developing cancer biomarkers. Genome Res 22(2):183–187. doi:10.1101/gr.124347.111

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Kumler I, Tuxen MK, Nielsen DL (2013) A systematic review of dual targeting in HER2-positive breast cancer. Cancer Treat Rev. doi:10.1016/j.ctrv.2013.09.002

    Google Scholar 

  5. Begg TB, Hill ID, Nickolls LC (1964) Breathalyzer and Kitagawa-Wright methods of measuring breath alcohol. Br Med J 1(5374):9–15

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Zhou L, Zhao SZ, Koh SK, Chen L, Vaz C, Tanavde V, Li XR, Beuerman RW (2012) In-depth analysis of the human tear proteome. J Proteomics 75(13):3877–3885. doi:10.1016/j.jprot.2012.04.053

    CAS  PubMed  Google Scholar 

  7. Filipiak W, Sponring A, Filipiak A, Ager C, Schubert J, Miekisch W, Amann A, Troppmair J (2010) TD-GC-MS analysis of volatile metabolites of human lung cancer and normal cells in vitro. Cancer Epidemiol Biomarkers Prev 19(1):182–195. doi:10.1158/1055-9965.EPI-09-0162

    CAS  PubMed  Google Scholar 

  8. Bijuklic K, Jennings P, Kountchev J, Hasslacher J, Aydin S, Sturn D, Pfaller W, Patsch JR, Joannidis M (2007) Migration of leukocytes across an endothelium-epithelium bilayer as a model of renal interstitial inflammation. Am J Physiol Cell Physiol 293(1): C486–C492. doi:10.1152/ajpcell.00419.2006

    CAS  PubMed  Google Scholar 

  9. Aydin S, Signorelli S, Lechleitner T, Joannidis M, Pleban C, Perco P, Pfaller W, Jennings P (2008) Influence of microvascular endothelial cells on transcriptional regulation of proximal tubular epithelial cells. Am J Physiol Cell Physiol 294(2):C543–C554. doi:10.1152/ajpcell.00307.2007

    CAS  PubMed  Google Scholar 

  10. Bijuklic K, Sturn DH, Jennings P, Kountchev J, Pfaller W, Wiedermann CJ, Patsch JR, Joannidis M (2006) Mechanisms of neutrophil transmigration across renal proximal tubular HK-2 cells. Cell Physiol Biochem 17(5–6):233–244. doi:10.1159/000094128

    CAS  PubMed  Google Scholar 

  11. Zurich MG, Stanzel S, Kopp-Schneider A, Prieto P, Honegger P (2013) Evaluation of aggregating brain cell cultures for the detection of acute organ-specific toxicity. Toxicol In vitro 27(4):1416–1424. doi:10.1016/j.tiv.2012.06.018

    CAS  PubMed  Google Scholar 

  12. Limonciel A, Aschauer L, Wilmes A, Prajczer S, Leonard MO, Pfaller W, Jennings P (2011) Lactate is an ideal non-invasive marker for evaluating temporal alterations in cell stress and toxicity in repeat dose testing regimes. Toxicol In vitro 25(8):1855–1862. doi:10.1016/j.tiv.2011.05.018

    CAS  PubMed  Google Scholar 

  13. Wilmes A, Limonciel A, Aschauer L, Moenks K, Bielow C, Leonard MO, Hamon J, Carpi D, Ruzek S, Handler A, Schmal O, Herrgen K, Bellwon P, Burek C, Truisi GL, Hewitt P, Di Consiglio E, Testai E, Blaauboer BJ, Guillou C, Huber CG, Lukas A, Pfaller W, Mueller SO, Bois FY, Dekant W, Jennings P (2013) Application of integrated transcriptomic, proteomic and metabolomic profiling for the delineation of mechanisms of drug induced cell stress. J Proteomics 79:180–194. doi:10.1016/j.jprot.2012.11.022

    CAS  PubMed  Google Scholar 

  14. Dieterle F, Perentes E, Cordier A, Roth DR, Verdes P, Grenet O, Pantano S, Moulin P, Wahl D, Mahl A, End P, Staedtler F, Legay F, Carl K, Laurie D, Chibout SD, Vonderscher J, Maurer G (2010) Urinary clusterin, cystatin C, beta2-microglobulin and total protein as markers to detect drug-induced kidney injury. Nat Biotechnol 28(5):463–469. doi:10.1038/nbt.1622

    CAS  PubMed  Google Scholar 

  15. FDA (2009) Guidance for industry drug-induced liver injury: premarketing clinical evaluation. US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER). Accessed Dec 2013.

    Google Scholar 

  16. Limonciel A, Wilmes A, Aschauer L, Radford R, Bloch KM, McMorrow T, Pfaller W, van Delft JH, Slattery C, Ryan MP, Lock EA, Jennings P (2012) Oxidative stress induced by potassium bromate exposure results in altered tight junction protein expression in renal proximal tubule cells. Arch Toxicol 86(11):1741–1751. doi:10.1007/s00204-012-0897-0

    CAS  PubMed  Google Scholar 

  17. Lechner J, Malloth N, Seppi T, Beer B, Jennings P, Pfaller W (2008) IFN-alpha induces barrier destabilization and apoptosis in renal proximal tubular epithelium. Am J Physiol Cell Physiol 294(1):C153–C160. doi:10.1152/ajpcell.00120.2007

    CAS  PubMed  Google Scholar 

  18. Novellino A, Scelfo B, Palosaari T, Price A, Sobanski T, Shafer TJ, Johnstone AF, Gross GW, Gramowski A, Schroeder O, Jugelt K, Chiappalone M, Benfenati F, Martinoia S, Tedesco MT, Defranchi E, D'Angelo P, Whelan M (2011) Development of micro-electrode array based tests for neurotoxicity: assessment of interlaboratory reproducibility with neuroactive chemicals. Front Neuroeng 4:4. doi:10.3389/fneng.2011.00004

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Jonsson MK, Wang QD, Becker B (2011) Impedance-based detection of beating rhythm and proarrhythmic effects of compounds on stem cell-derived cardiomyocytes. Assay Drug Dev Technol 9(6):589–599. doi:10.1089/adt.2011.0396

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Xi B, Wang T, Li N, Ouyang W, Zhang W, Wu J, Xu X, Wang X, Abassi YA (2011) Functional cardiotoxicity profiling and screening using the xCELLigence RTCA cardio system. J Lab Autom 16(6):415–421. doi:10.1016/j.jala.2011.09.002

    CAS  PubMed  Google Scholar 

  21. Marrer E, Dieterle F (2010) Impact of biomarker development on drug safety assessment. Toxicol Appl Pharmacol 243(2):167–179. doi:10.1016/j.taap.2009.12.015

    CAS  PubMed  Google Scholar 

  22. Amacher DE (2010) The discovery and development of proteomic safety biomarkers for the detection of drug-induced liver toxicity. Toxicol Appl Pharmacol 245(1):134–142. doi:10.1016/j.taap.2010.02.011

    CAS  PubMed  Google Scholar 

  23. Ozer J, Ratner M, Shaw M, Bailey W, Schomaker S (2008) The current state of serum biomarkers of hepatotoxicity. Toxicology 245(3):194–205. doi:10.1016/j.tox.2007.11.021

    CAS  PubMed  Google Scholar 

  24. Chouker A, Martignoni A, Schauer RJ, Dugas M, Schachtner T, Kaufmann I, Setzer F, Rau HG, Lohe F, Jauch KW, Peter K, Thiel M (2005) Alpha-glutathione S-transferase as an early marker of hepatic ischemia/reperfusion injury after liver resection. World J Surg 29(4):528–534. doi:10.1007/s00268-004-7431-3

    PubMed  Google Scholar 

  25. Branten AJ, Mulder TP, Peters WH, Assmann KJ, Wetzels JF (2000) Urinary excretion of glutathione S transferases alpha and pi in patients with proteinuria: reflection of the site of tubular injury. Nephron 85(2):120–126, doi:45644

    CAS  PubMed  Google Scholar 

  26. Koleva M (1977) Changes in the urinary excretion of gamma-glutamyltranspeptidase, leucine aminopeptidase and alkaline phosphatase in the combined action of ethylene glycol and high temperature. Probl Khig 3: 35–46

    CAS  PubMed  Google Scholar 

  27. Pfaller W, Thorwartl U, Nevinny-Stickel M, Krall M, Schober M, Joannidis M, Hobisch A (1994) Clinical value of fructose 1,6 bisphosphatase in monitoring renal proximal tubular injury. Kidney Int Suppl 47:S68–S75

    CAS  PubMed  Google Scholar 

  28. Wellwood JM, Davies D, Leighton M, Thompson AE (1978) Urinary N-acetyl-beta-D-glucosaminidase assay in renal transplant recipients. Transplantation 26(6):396–400

    CAS  PubMed  Google Scholar 

  29. Babuin L, Jaffe AS (2005) Troponin: the biomarker of choice for the detection of cardiac injury. CMAJ 173(10):1191–1202. doi:10.1503/cmaj/051291

    PubMed Central  PubMed  Google Scholar 

  30. van der Harst MR, Bull S, Laffont CM, Klein WR (2005) Gentamicin nephrotoxicity–a comparison of in vitro findings with in vivo experiments in equines. Vet Res Commun 29(3):247–261

    PubMed  Google Scholar 

  31. Senthil Kumar KJ, Liao JW, Xiao JH, Gokila Vani M, Wang SY (2012) Hepatoprotective effect of lucidone against alcohol-induced oxidative stress in human hepatic HepG2 cells through the up-regulation of HO-1/Nrf-2 antioxidant genes. Toxicol In Vitro 26(5):700–708. doi:10.1016/j.tiv.2012.03.012

    CAS  PubMed  Google Scholar 

  32. Jennings P, Koppelstaetter C, Pfaller W, Morin JP, Hartung T, Ryan MP (2004) Assessment of a new cell culture perfusion apparatus for in vitro chronic toxicity testing. Part 2: toxicological evaluation. ALTEX 21(2):61–66

    PubMed  Google Scholar 

  33. Miret S, De Groene EM, Klaffke W (2006) Comparison of in vitro assays of cellular toxicity in the human hepatic cell line HepG2. J Biomol Screen 11(2):184–193. doi:10.1177/1087057105283787

    CAS  PubMed  Google Scholar 

  34. Jennings P, Limonciel A, Felice L, Leonard MO (2013) An overview of transcriptional regulation in response to toxicological insult. Arch Toxicol 87(1):49–72. doi:10.1007/s00204-012-0919-y

    CAS  PubMed  Google Scholar 

  35. Zager RA, Johnson AC, Becker K (2012) Plasma and urinary heme oxygenase-1 in AKI. J Am Soc Nephrol 23(6):1048–1057. doi:10.1681/ASN.2011121147

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Wilmes A, Crean D, Aydin S, Pfaller W, Jennings P, Leonard MO (2011) Identification and dissection of the Nrf2 mediated oxidative stress pathway in human renal proximal tubule toxicity. Toxicol In Vitro 25(3):613–622. doi:10.1016/j.tiv.2010.12.009

    CAS  PubMed  Google Scholar 

  37. Russmann S, Kullak-Ublick GA, Grattagliano I (2009) Current concepts of mechanisms in drug-induced hepatotoxicity. Curr Med Chem 16(23):3041–3053

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Kaplowitz N (2001) Drug-induced liver disorders: implications for drug development and regulation. Drug Saf 24(7):483–490

    CAS  PubMed  Google Scholar 

  39. Stevens JL, Baker TK (2009) The future of drug safety testing: expanding the view and narrowing the focus. Drug Discov Today 14(3–4):162–167. doi:10.1016/j.drudis.2008.11.009

    PubMed  Google Scholar 

  40. Vinken M, Maes M, Vanhaecke T, Rogiers V (2013) Drug-induced liver injury: mechanisms, types and biomarkers. Curr Med Chem 20(24):3011–21

    CAS  PubMed  Google Scholar 

  41. Majumdar M, Ratho R, Chawla Y, Singh MP (2013) High levels of circulating HMGB1 as a biomarker of acute liver failure in patients with viral hepatitis E. Liver Int 33(9):1341–1348. doi:10.1111/liv.12197

    CAS  PubMed  Google Scholar 

  42. Oshima G, Shinoda M, Tanabe M, Ebinuma H, Nishiyama R, Takano K, Yamada S, Miyasho T, Masugi Y, Matsuda S, Suda K, Fukunaga K, Matsubara K, Hibi T, Yagi H, Hayashida T, Yamagishi Y, Obara H, Itano O, Takeuchi H, Kawachi S, Saito H, Hibi T, Maruyama I, Kitagawa Y (2012) Increased plasma levels of high mobility group box 1 in patients with acute liver failure. Eur Surg Res 48(3):154–162. doi:10.1159/000338363

    CAS  PubMed  Google Scholar 

  43. Erlandsson Harris H, Andersson U (2004) Mini-review: the nuclear protein HMGB1 as a proinflammatory mediator. Eur J Immunol 34(6):1503–1512. doi:10.1002/eji.200424916

    CAS  PubMed  Google Scholar 

  44. Seo YS, Kwon JH, Yaqoob U, Yang L, de Assuncao TM, Simonetto DA, Verma VK, Shah VH (2013) HMGB1 recruits hepatic stellate cells and liver endothelial cells to sites of ethanol induced parenchymal cell injury. Am J Physiol Gastrointest Liver Physiol. doi:10.1152/ajpgi.00151.2013

    PubMed  Google Scholar 

  45. Rangaswami H, Bulbule A, Kundu GC (2006) Osteopontin: role in cell signaling and cancer progression. Trends Cell Biol 16(2):79–87. doi:10.1016/j.tcb.2005.12.005

    CAS  PubMed  Google Scholar 

  46. Wang KX, Denhardt DT (2008) Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev 19(5–6):333–345. doi:10.1016/j.cytogfr.2008.08.001

    CAS  PubMed  Google Scholar 

  47. Urtasun R, Lopategi A, George J, Leung TM, Lu Y, Wang X, Ge X, Fiel MI, Nieto N (2012) Osteopontin, an oxidant stress sensitive cytokine, up-regulates collagen-I via integrin alpha(V)beta(3) engagement and PI3K/pAkt/NFkappaB signaling. Hepatology 55(2):594–608. doi:10.1002/hep.24701

    CAS  PubMed Central  PubMed  Google Scholar 

  48. He CY, Liang BB, Fan XY, Cao L, Chen R, Guo YJ, Zhao J (2012) The dual role of osteopontin in acetaminophen hepatotoxicity. Acta Pharmacol Sin 33(8):1004–1012. doi:10.1038/aps.2012.47

    CAS  PubMed  Google Scholar 

  49. Ramaiah SK, Rittling S (2007) Role of osteopontin in regulating hepatic inflammatory responses and toxic liver injury. Expert Opin Drug Metab Toxicol 3(4):519–526. doi:10.1517/17425225.3.4.519

    CAS  PubMed  Google Scholar 

  50. Fujisawa K, Yabuuchi C, Izawa T, Kuwamura M, Takasu N, Torii M, Yamate J (2013) Expression patterns of heat shock protein 25 in carbon tetrachloride-induced rat liver injury. Exp Toxicol Pathol 65(5):469–476. doi:10.1016/j.etp.2012.02.001

    CAS  PubMed  Google Scholar 

  51. Kawashima R, Mochida S, Matsui A, YouLuTu ZY, Ishikawa K, Toshima K, Yamanobe F, Inao M, Ikeda H, Ohno A, Nagoshi S, Uede T, Fujiwara K (1999) Expression of osteopontin in Kupffer cells and hepatic macrophages and Stellate cells in rat liver after carbon tetrachloride intoxication: a possible factor for macrophage migration into hepatic necrotic areas. Biochem Biophys Res Commun 256(3):527–531. doi:10.1006/bbrc.1999.0372

    CAS  PubMed  Google Scholar 

  52. Guo H, Marroquin CE, Wai PY, Kuo PC (2005) Nitric oxide-dependent osteopontin expression induces metastatic behavior in HepG2 cells. Dig Dis Sci 50(7):1288–1298

    CAS  PubMed  Google Scholar 

  53. Zhang G, Huang Z, Shi R, Lin Y, Hao B (2006) Osteopontin regulation by protein kinase B (Akt) in HepG2 cells. Exp Oncol 28(1):36–39

    PubMed  Google Scholar 

  54. Xia Y, Chen R, Song Z, Ye S, Sun R, Xue Q, Zhang Z (2010) Gene expression profiles during activation of cultured rat hepatic stellate cells by tumoral hepatocytes and fetal bovine serum. J Cancer Res Clin Oncol 136(2):309–321. doi:10.1007/s00432-009-0666-5

    CAS  PubMed  Google Scholar 

  55. Moll R (1991) Molecular diversity of cytokeratins: significance for cell and tumor differentiation. Acta Histochem Suppl 41: 117–127

    CAS  PubMed  Google Scholar 

  56. Rydlander L, Ziegler E, Bergman T, Schoberl E, Steiner G, Bergman AC, Zetterberg A, Marberger M, Bjorklund P, Skern T, Einarsson R, Jornvall H (1996) Molecular characterization of a tissue-polypeptide-specific-antigen epitope and its relationship to human cytokeratin 18. Eur J Biochem 241(2):309–314

    CAS  PubMed  Google Scholar 

  57. Leers MP, Kolgen W, Bjorklund V, Bergman T, Tribbick G, Persson B, Bjorklund P, Ramaekers FC, Bjorklund B, Nap M, Jornvall H, Schutte B (1999) Immunocytochemical detection and mapping of a cytokeratin 18 neo-epitope exposed during early apoptosis. J Pathol 187(5):567–572. doi:10.1002/(SICI)1096-9896(199904)187:5<567::AID-PATH288>3.0.CO;2-J

    CAS  PubMed  Google Scholar 

  58. Thulin P, Nordahl G, Gry M, Yimer G, Aklillu E, Makonnen E, Aderaye G, Lindquist L, Mattsson CM, Ekblom B, Antoine DJ, Park BK, Linder S, Harrill AH, Watkins PB, Glinghammar B, Schuppe-Koistinen I (2013) Keratin-18 and microRNA-122 complement alanine aminotransferase as novel safety biomarkers for drug-induced liver injury in two human cohorts. Liver Int. doi:10.1111/liv.12322

    PubMed  Google Scholar 

  59. Feldstein AE, Wieckowska A, Lopez AR, Liu YC, Zein NN, McCullough AJ (2009) Cytokeratin-18 fragment levels as noninvasive biomarkers for nonalcoholic steatohepatitis: a multicenter validation study. Hepatology 50(4):1072–1078. doi:10.1002/hep.23050

    CAS  PubMed Central  PubMed  Google Scholar 

  60. John K, Wielgosz S, Schulze-Osthoff K, Bantel H, Hass R (2013) Increased plasma levels of CK-18 as potential cell death biomarker in patients with HELLP syndrome. Cell Death Dis 4:e886. doi:10.1038/cddis. 2013.408

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Parfieniuk-Kowerda A, Lapinski TW, Rogalska-Plonska M, Swiderska M, Panasiuk A, Jaroszewicz J, Flisiak R (2013) Serum cytochrome c and m30-neoepitope of cytokeratin-18 in chronic hepatitis C. Liver Int. doi:10.1111/liv.12297

    PubMed  Google Scholar 

  62. Yilmaz Y, Dolar E, Ulukaya E, Akgoz S, Keskin M, Kiyici M, Yerci O, Oral AY, Gul CB, Gurel S, Nak SG, Gulten M (2009) Elevated serum levels of caspase-cleaved cytokeratin 18 (CK18-Asp396) in patients with nonalcoholic steatohepatitis and chronic hepatitis C. Med Sci Monit 15(4):CR189–CR193

    CAS  PubMed  Google Scholar 

  63. Hetz H, Hoetzenecker K, Hacker S, Faybik P, Pollreisz A, Moser B, Roth G, Hoetzenecker W, Lichtenauer M, Klinger M, Krenn CG, Ankersmit HJ (2007) Caspase-cleaved cytokeratin 18 and 20 S proteasome in liver degeneration. J Clin Lab Anal 21(5):277–281. doi:10.1002/jcla.20180

    CAS  PubMed  Google Scholar 

  64. Jones SE, Jomary C (2002) Clusterin. Int J Biochem Cell Biol 34(5):427–431

    CAS  PubMed  Google Scholar 

  65. Aulitzky WK, Schlegel PN, Wu DF, Cheng CY, Chen CL, Li PS, Goldstein M, Reidenberg M, Bardin CW (1992) Measurement of urinary clusterin as an index of nephrotoxicity. Proc Soc Exp Biol Med 199(1):93–96

    CAS  PubMed  Google Scholar 

  66. Correa-Rotter R, Ibarra-Rubio ME, Schwochau G, Cruz C, Silkensen JR, Pedraza-Chaverri J, Chmielewski D, Rosenberg ME (1998) Induction of clusterin in tubules of nephrotic rats. J Am Soc Nephrol 9(1):33–37

    CAS  PubMed  Google Scholar 

  67. Rached E, Hoffmann D, Blumbach K, Weber K, Dekant W, Mally A (2008) Evaluation of putative biomarkers of nephrotoxicity after exposure to ochratoxin a in vivo and in vitro. Toxicol Sci 103(2):371–381. doi:10.1093/toxsci/kfn040

    CAS  PubMed  Google Scholar 

  68. Ishii A, Sakai Y, Nakamura A (2007) Molecular pathological evaluation of clusterin in a rat model of unilateral ureteral obstruction as a possible biomarker of nephrotoxicity. Toxicol Pathol 35(3):376–382. doi:10.1080/01926230701230320

    CAS  PubMed  Google Scholar 

  69. Sohn SJ, Kim SY, Kim HS, Chun YJ, Han SY, Kim SH, Moon A (2013) In vitro evaluation of biomarkers for cisplatin-induced nephrotoxicity using HK-2 human kidney epithelial cells. Toxicol Lett 217(3):235–242. doi:10.1016/j.toxlet.2012.12.015

    CAS  PubMed  Google Scholar 

  70. Girton RA, Sundin DP, Rosenberg ME (2002) Clusterin protects renal tubular epithelial cells from gentamicin-mediated cytotoxicity. Am J Physiol Renal Physiol 282(4):F703–F709. doi:10.1152/ajprenal.00060.2001

    CAS  PubMed  Google Scholar 

  71. Dinarello CA, Novick D, Kim S, Kaplanski G (2013) Interleukin-18 and IL-18 binding protein. Front Immunol 4:289. doi:10.3389/fimmu.2013.00289

    PubMed Central  PubMed  Google Scholar 

  72. Parikh CR, Jani A, Melnikov VY, Faubel S, Edelstein CL (2004) Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis 43(3):405–414

    CAS  PubMed  Google Scholar 

  73. Parikh CR, Abraham E, Ancukiewicz M, Edelstein CL (2005) Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. J Am Soc Nephrol 16(10):3046–3052. doi:10.1681/ASN.2005030236

    CAS  PubMed  Google Scholar 

  74. Hall IE, Yarlagadda SG, Coca SG, Wang Z, Doshi M, Devarajan P, Han WK, Marcus RJ, Parikh CR (2010) IL-18 and urinary NGAL predict dialysis and graft recovery after kidney transplantation. J Am Soc Nephrol 21(1):189–197. doi:10.1681/ASN.2009030264

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Ling W, Zhaohui N, Ben H, Leyi G, Jianping L, Huili D, Jiaqi Q (2008) Urinary IL-18 and NGAL as early predictive biomarkers in contrast-induced nephropathy after coronary angiography. Nephron Clin Pract 108(3):c176–c181. doi:10.1159/000117814

    PubMed  Google Scholar 

  76. Miyauchi K, Takiyama Y, Honjyo J, Tateno M, Haneda M (2009) Upregulated IL-18 expression in type 2 diabetic subjects with nephropathy: TGF-beta1 enhanced IL-18 expression in human renal proximal tubular epithelial cells. Diabetes Res Clin Pract 83(2):190–199. doi:10.1016/j.diabres.2008.11.018

    CAS  PubMed  Google Scholar 

  77. Xu SY, Carlson M, Engstrom A, Garcia R, Peterson CG, Venge P (1994) Purification and characterization of a human neutrophil lipocalin (HNL) from the secondary granules of human neutrophils. Scand J Clin Lab Invest 54(5):365–376

    CAS  PubMed  Google Scholar 

  78. Kieran NE, Doran PP, Connolly SB, Greenan MC, Higgins DF, Leonard M, Godson C, Taylor CT, Henger A, Kretzler M, Burne MJ, Rabb H, Brady HR (2003) Modification of the transcriptomic response to renal ischemia/reperfusion injury by lipoxin analog. Kidney Int 64(2):480–492. doi:10.1046/j.1523-1755.2003.00106.x

    CAS  PubMed  Google Scholar 

  79. Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, Barasch J, Devarajan P (2003) Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol 14(10):2534–2543

    CAS  PubMed  Google Scholar 

  80. Berger T, Togawa A, Duncan GS, Elia AJ, You-Ten A, Wakeham A, Fong HE, Cheung CC, Mak TW (2006) Lipocalin 2-deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia-reperfusion injury. Proc Natl Acad Sci U S A 103(6):1834–1839. doi:10.1073/pnas.0510847103

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Zhao P, Stephens JM (2013) STAT1, NF-kappaB and ERKs play a role in the induction of lipocalin-2 expression in adipocytes. Mol Metab 2(3):161–170. doi:10.1016/j.molmet.2013.04.003

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Makris K, Rizos D, Kafkas N, Haliassos A (2012) Neurophil gelatinase-associated lipocalin as a new biomarker in laboratory medicine. Clin Chem Lab Med 50(9):1519–1532. doi:10.1515/cclm-2012-0227

    CAS  PubMed  Google Scholar 

  83. Bach PH, Nguyen TK (1998) Renal papillary necrosis–40 years on. Toxicol Pathol 26(1):73–91

    CAS  PubMed  Google Scholar 

  84. Hildebrand H, Rinke M, Schluter G, Bomhard E, Falkenberg FW (1999) Urinary antigens as markers of papillary toxicity. II: Application of monoclonal antibodies for the determination of papillary antigens in rat urine. Arch Toxicol 73(4–5):233–245

    CAS  PubMed  Google Scholar 

  85. Pinches M, Betts C, Bickerton S, Burdett L, Thomas H, Derbyshire N, Jones HB, Moores M (2012) Evaluation of novel renal biomarkers with a cisplatin model of kidney injury: gender and dosage differences. Toxicol Pathol 40(3):522–533. doi:10.1177/0192623311432438

    CAS  PubMed  Google Scholar 

  86. Ferri N, Siegl P, Corsini A, Herrmann J, Lerman A, Benghozi R (2013) Drug attrition during pre-clinical and clinical development: understanding and managing drug-induced cardiotoxicity. Pharmacol Ther 138(3):470–484. doi:10.1016/j.pharmthera.2013.03.005

    CAS  PubMed  Google Scholar 

  87. Gerszten RE, Asnani A, Carr SA (2011) Status and prospects for discovery and verification of new biomarkers of cardiovascular disease by proteomics. Circ Res 109(4):463–474. doi:10.1161/CIRCRESAHA.110.225003

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Halade GV, Jin YF, Lindsey ML (2013) Matrix metalloproteinase (MMP)-9: a proximal biomarker for cardiac remodeling and a distal biomarker for inflammation. Pharmacol Ther 139(1):32–40. doi:10.1016/ j.pharmthera.2013.03.009

    CAS  PubMed  Google Scholar 

  89. Tseng HC, Lee IT, Lin CC, Chi PL, Cheng SE, Shih RH, Hsiao LD, Yang CM (2013) IL-1beta promotes corneal epithelial cell migration by increasing MMP-9 expression through NF-kappaB- and AP-1-dependent pathways. PLoS One 8(3):e57955. doi:10.1371/journal.pone.0057955

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Gordon GM, Ledee DR, Feuer WJ, Fini ME (2009) Cytokines and signaling pathways regulating matrix metalloproteinase-9 (MMP-9) expression in corneal epithelial cells. J Cell Physiol 221(2):402–411. doi:10.1002/jcp.21869

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Awad AE, Kandalam V, Chakrabarti S, Wang X, Penninger JM, Davidge ST, Oudit GY, Kassiri Z (2010) Tumor necrosis factor induces matrix metalloproteinases in cardiomyocytes and cardiofibroblasts differentially via superoxide production in a PI3Kgamma-dependent manner. Am J Physiol Cell Physiol 298(3):C679–C692. doi:10.1152/ajpcell.00351.2009

    CAS  PubMed  Google Scholar 

  92. Sundstrom J, Evans JC, Benjamin EJ, Levy D, Larson MG, Sawyer DB, Siwik DA, Colucci WS, Sutherland P, Wilson PW, Vasan RS (2004) Relations of plasma matrix metalloproteinase-9 to clinical cardiovascular risk factors and echocardiographic left ventricular measures: the Framingham Heart Study. Circulation 109(23):2850–2856.doi:10.1161/01.CIR.0000129318. 79570.84

    PubMed  Google Scholar 

  93. Vorovich EE, Chuai S, Li M, Averna J, Marwin V, Wolfe D, Reilly MP, Cappola TP (2008) Comparison of matrix metalloproteinase 9 and brain natriuretic peptide as clinical biomarkers in chronic heart failure. Am Heart J 155(6):992–997. doi:10.1016/j.ahj.2008.01.007

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79. doi:10.1146/annurev.physiol.65.092101.142243

    CAS  PubMed  Google Scholar 

  95. Latini R, Masson S, de Angelis N, Anand I (2002) Role of brain natriuretic peptide in the diagnosis and management of heart failure: current concepts. J Card Fail 8(5): 288–299

    CAS  PubMed  Google Scholar 

  96. Bistola V, Nikolopoulou M, Derventzi A, Kataki A, Sfyras N, Nikou N, Toutouza M, Toutouzas P, Stefanadis C, Konstadoulakis MM (2008) Long-term primary cultures of human adult atrial cardiac myocytes: cell viability, structural properties and BNP secretion in vitro. Int J Cardiol 131(1):113–122. doi:10.1016/j.ijcard.2007.10.058

    PubMed  Google Scholar 

  97. Harada M, Saito Y, Kuwahara K, Ogawa E, Ishikawa M, Nakagawa O, Miyamoto Y, Kamitani S, Hamanaka I, Kajiyama N, Takahashi N, Masuda I, Itoh H, Nakao K (1998) Interaction of myocytes and nonmyocytes is necessary for mechanical stretch to induce ANP/BNP production in cardiocyte culture. J Cardiovasc Pharmacol 31(Suppl 1):S357–S359

    CAS  PubMed  Google Scholar 

  98. Woodruff PG, Boushey HA, Dolganov GM, Barker CS, Yang YH, Donnelly S, Ellwanger A, Sidhu SS, Dao-Pick TP, Pantoja C, Erle DJ, Yamamoto KR, Fahy JV (2007) Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc Natl Acad Sci U S A 104(40):15858–15863. doi:10.1073/pnas.0707413104

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Parulekar AD, Atik MA, Hanania NA (2013) Periostin, a novel biomarker of TH2-driven asthma. Curr Opin Pulm Med. doi:10.1097/MCP.0000000000000005

    PubMed  Google Scholar 

  100. Corren J, Lemanske RF, Hanania NA, Korenblat PE, Parsey MV, Arron JR, Harris JM, Scheerens H, Wu LC, Su Z, Mosesova S, Eisner MD, Bohen SP, Matthews JG (2011) Lebrikizumab treatment in adults with asthma. N Engl J Med 365(12):1088–1098. doi:10.1056/NEJMoa1106469

    CAS  PubMed  Google Scholar 

  101. Chan YC, Banerjee J, Choi SY, Sen CK (2012) miR-210: the master hypoxamir. Microcirculation 19(3):215–223. doi:10.1111/j.1549-8719.2011.00154.x

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Magenta A, Greco S, Gaetano C, Martelli F (2013) Oxidative stress and microRNAs in vascular diseases. Int J Mol Sci 14(9):17319–17346. doi:10.3390/ijms140917319

    PubMed Central  PubMed  Google Scholar 

  103. Iwamoto H, Kanda Y, Sejima T, Osaki M, Okada F, Takenaka A (2014) Serum miR-210 as a potential biomarker of early clear cell renal cell carcinoma. Int J Oncol 44(1):53–58. doi:10.3892/ijo.2013.2169

    CAS  PubMed  Google Scholar 

  104. Redova M, Poprach A, Besse A, Iliev R, Nekvindova J, Lakomy R, Radova L, Svoboda M, Dolezel J, Vyzula R, Slaby O (2013) MiR-210 expression in tumor tissue and in vitro effects of its silencing in renal cell carcinoma. Tumour Biol 34(1):481–491. doi:10.1007/s13277-012-0573-2

    CAS  PubMed  Google Scholar 

  105. Lorenzen JM, Volkmann I, Fiedler J, Schmidt M, Scheffner I, Haller H, Gwinner W, Thum T (2011) Urinary miR-210 as a mediator of acute T-cell mediated rejection in renal allograft recipients. Am J Transplant 11(10):2221–2227. doi:10.1111/j.1600-6143.2011.03679.x

    CAS  PubMed  Google Scholar 

  106. Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA, Xu C, Mason WS, Moloshok T, Bort R, Zaret KS, Taylor JM (2004) miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol 1(2):106–113

    CAS  PubMed  Google Scholar 

  107. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL, Graham M, McKay R, Subramaniam A, Propp S, Lollo BA, Freier S, Bennett CF, Bhanot S, Monia BP (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3(2):87–98. doi:10.1016/j.cmet.2006.01.005

    CAS  PubMed  Google Scholar 

  108. Cui L, Shi Y, Zhou X, Wang X, Wang J, Lan Y, Wang M, Zheng L, Li H, Wu Q, Zhang J, Fan D, Han Y (2013) A set of microRNAs mediate direct conversion of human umbilical cord lining-derived mesenchymal stem cells into hepatocytes. Cell Death Dis 4:e918. doi:10.1038/cddis.2013.429

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Deng XG, Qiu RL, Wu YH, Li ZX, Xie P, Zhang J, Zhou JJ, Zeng LX, Tang J, Maharjan A, Deng JM (2013) Overexpression of miR-122 promotes the hepatic differentiation and maturation of mouse ESCs through a miR-122/FoxA1/HNF4a-positive feedback loop. Liver Int. doi:10.1111/liv.12239

    PubMed  Google Scholar 

  110. Doddapaneni R, Chawla YK, Das A, Kalra JK, Ghosh S, Chakraborti A (2013) Overexpression of microRNA-122 enhances in vitro hepatic differentiation of fetal liver-derived stem/progenitor cells. J Cell Biochem 114(7):1575–1583. doi:10.1002/jcb.24499

    CAS  PubMed  Google Scholar 

  111. Wang K, Zhang S, Marzolf B, Troisch P, Brightman A, Hu Z, Hood LE, Galas DJ (2009) Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci U S A 106(11):4402–4407. doi:10.1073/pnas.0813371106

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Starkey Lewis PJ, Dear J, Platt V, Simpson KJ, Craig DG, Antoine DJ, French NS, Dhaun N, Webb DJ, Costello EM, Neoptolemos JP, Moggs J, Goldring CE, Park BK (2011) Circulating microRNAs as potential markers of human drug-induced liver injury. Hepatology 54(5):1767–1776. doi:10.1002/hep.24538

    CAS  PubMed  Google Scholar 

  113. Nabialek E, Wanha W, Kula D, Jadczyk T, Krajewska M, Kowalowka A, Dworowy S, Hrycek E, Wludarczyk W, Parma Z, Michalewska-Wludarczyk A, Pawlowski T, Ochala B, Jarzab B, Tendera M, Wojakowski W (2013) Circulating microRNAs (miR-423-5p, miR-208a and miR-1) in acute myocardial infarction and stable coronary heart disease. Minerva Cardioangiol 61(6):627–637

    CAS  PubMed  Google Scholar 

  114. Sayed AS, Xia K, Yang TL, Peng J (2013) Circulating microRNAs: a potential role in diagnosis and prognosis of acute myocardial infarction. Dis Markers 35(5):561–566. doi:10.1155/2013/217948

    PubMed Central  PubMed  Google Scholar 

  115. Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF (2006) Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci U S A 103(23):8721–8726. doi:10.1073/pnas.0602831103

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Huang F, Tang L, Fang ZF, Hu XQ, Pan JY, Zhou SH (2013) miR-1-mediated induction of cardiogenesis in mesenchymal stem cells via downregulation of Hes-1. BioMed Res Int 2013:216286. doi:10.1155/2013/216286

    Google Scholar 

  117. Chen T, Ding G, Jin Z, Wagner MB, Yuan Z (2012) Insulin ameliorates miR-1-induced injury in H9c2 cells under oxidative stress via Akt activation. Mol Cell Biochem 369(1–2): 167–174. doi:10.1007/s11010-012-1379-7

    CAS  PubMed  Google Scholar 

  118. Shan ZX, Lin QX, Fu YH, Deng CY, Zhou ZL, Zhu JN, Liu XY, Zhang YY, Li Y, Lin SG, Yu XY (2009) Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction. Biochem Biophys Res Commun 381(4):597–601. doi:10.1016/j.bbrc.2009.02.097

    CAS  PubMed  Google Scholar 

  119. Bostjancic E, Zidar N, Stajner D, Glavac D (2010) MicroRNA miR-1 is up-regulated in remote myocardium in patients with myocardial infarction. Folia Biol 56(1):27–31

    CAS  Google Scholar 

  120. Cheng Y, Tan N, Yang J, Liu X, Cao X, He P, Dong X, Qin S, Zhang C (2010) A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clin Sci (Lond) 119(2):87–95. doi:10.1042/CS20090645

    CAS  Google Scholar 

  121. Zhou X, Mao A, Wang X, Duan X, Yao Y, Zhang C (2013) Urine and serum microRNA-1 as novel biomarkers for myocardial injury in open-heart surgeries with cardiopulmonary bypass. PLoS One 8(4):e62245. doi:10.1371/journal.pone.0062245

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Ellis JK, Athersuch TJ, Cavill R, Radford R, Slattery C, Jennings P, McMorrow T, Ryan MP, Ebbels TM, Keun HC (2011) Metabolic response to low-level toxicant exposure in a novel renal tubule epithelial cell system. Mol Biosyst 7(1):247–257. doi:10.1039/c0mb00146e

    CAS  PubMed  Google Scholar 

  123. Aschauer L, Gruber LN, Pfaller W, Limonciel A, Athersuch TJ, Cavill R, Khan A, Gstraunthaler G, Grillari J, Grillari R, Hewitt P, Leonard MO, Wilmes A, Jennings P (2013) Delineation of the key aspects in the regulation of epithelial monolayer formation. Mol Cell Biol 33(13):2535–2550. doi:10.1128/MCB.01435-12

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Jennings .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wilmes, A., Limonciel, A., Leonard, M.O., Jennings, P. (2014). Translational Biomarkers, In Vitro and In Vivo. In: Bal-Price, A., Jennings, P. (eds) In Vitro Toxicology Systems. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0521-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0521-8_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0520-1

  • Online ISBN: 978-1-4939-0521-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics