Skip to main content

High Content Imaging Approaches for In Vitro Toxicology

  • Protocol
  • First Online:
In Vitro Toxicology Systems

Abstract

High Content Imaging (HCI) is a quantitative automated fluorescence microscopy approach which uses advanced algorithms for rapid analysis of images acquired from fluorescently stained cells. The term “High Content” derives from the fact that HCI allows for multiplexing of various readouts by use of several fluorescence probes at different wavelengths. This method facilitates information generation on multiple simultaneous readouts, for instance on morphological structures, spatial and dynamic processes of molecules, signal transduction, or enzyme activities. Moreover, mechanisms of compound-induced toxicity and the specific cellular pathways involved may be studied by combining the HCI approach with the use of specific enzyme inhibitors, enzyme inducers or RNA interference. As HCI provides multiplexed detailed information at the level of a single cell, as well as characterization of cellular population distributions, it offers a superior investigational tool compared to standard spectrophotometric plate readers that measure only average properties of a cell population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor DL (2010) A personal perspective on high-content screening (HCS): from the beginning. J Biomol Screen 15(7):720–725

    Article  PubMed  Google Scholar 

  2. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12(5):913–922

    Article  CAS  PubMed  Google Scholar 

  3. Stevenson D, Wokosin D, Girkin J, Grant MH (2002) Measurement of the intracellular distribution of reduced glutathione in cultured rat hepatocytes using monochlorobimane and confocal laser scanning microscopy. Toxicol In Vitro 16(5):609–619

    Article  CAS  PubMed  Google Scholar 

  4. Gutscher M, Pauleau AL, Marty L et al (2008) Real-time imaging of the intracellular glutathione redox potential. Nat Methods 5(6): 553–559

    Article  CAS  PubMed  Google Scholar 

  5. Lee HC, Yin PH, Lu CY, Chi CW, Wei YH (2000) Increase of mitochondria and mitochondrial DNA in response to oxidative stress in human cells. Biochem J 348(Pt 2):425–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Kluza J, Marchetti P, Gallego MA et al (2004) Mitochondrial proliferation during apoptosis induced by anticancer agents: effects of doxorubicin and mitoxantrone on cancer and cardiac cells. Oncogene 23(42):7018–7030

    Article  CAS  PubMed  Google Scholar 

  7. Pendergrass W, Wolf N, Poot M (2004) Efficacy of MitoTracker Green and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytometry A 61(2):162–169

    Article  CAS  PubMed  Google Scholar 

  8. Petrovas C, Mueller YM, Dimitriou ID et al (2007) Increased mitochondrial mass characterizes the survival defect of HIV-specific CD8(+) T cells. Blood 109(6):2505–2513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50(2): 98–115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Martin SJ, Reutelingsperger CP, McGahon AJ et al (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182(5):1545–1556

    Article  CAS  PubMed  Google Scholar 

  11. Begriche K, Massart J, Robin MA, Borgne-Sanchez A, Fromenty B (2011) Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. J Hepatol 54(4): 773–794

    Article  CAS  PubMed  Google Scholar 

  12. Labbe G, Pessayre D, Fromenty B (2008) Drug-induced liver injury through mitochondrial dysfunction: mechanisms and detection during preclinical safety studies. Fundam Clin Pharmacol 22(4):335–353

    Article  CAS  PubMed  Google Scholar 

  13. Halliwell WH (1997) Cationic amphiphilic drug-induced phospholipidosis. Toxicol Pathol 25(1):53–60

    Article  CAS  PubMed  Google Scholar 

  14. Morelli JK, Buehrle M, Pognan F et al (2006) Validation of an in vitro screen for phospholipidosis using a high-content biology platform. Cell Biol Toxicol 22(1):15–27

    Article  CAS  PubMed  Google Scholar 

  15. Borst P, Zelcer N, van de Wetering K (2006) MRP2 and 3 in health and disease. Cancer Lett 234(1):51–61

    Article  CAS  PubMed  Google Scholar 

  16. Funk C, Ponelle C, Scheuermann G, Pantze M (2001) Cholestatic potential of troglitazone as a possible factor contributing to troglitazone-induced hepatotoxicity: in vivo and in vitro interaction at the canalicular bile salt export pump (Bsep) in the rat. Mol Pharmacol 59(3): 627–635

    CAS  PubMed  Google Scholar 

  17. Kamimoto Y, Gatmaitan Z, Hsu J, Arias IM (1989) The function of Gp170, the multidrug resistance gene product, in rat liver canalicular membrane vesicles. J Biol Chem 264(20): 11693–11698

    CAS  PubMed  Google Scholar 

  18. Zamek-Gliszczynski MJ, Xiong H, Patel NJ et al (2003) Pharmacokinetics of 5 (and 6)-carboxy-2′,7′-dichlorofluorescein and its diacetate promoiety in the liver. J Pharmacol Exp Ther 304(2):801–809

    Article  CAS  PubMed  Google Scholar 

  19. Wilton JC, Coleman R, Lankester DJ, Chipman JK (1993) Stability and optimization of canalicular function in hepatocyte couplets. Cell Biochem Funct 11(3):179–185

    Article  CAS  PubMed  Google Scholar 

  20. Konya A, Andor A, Satorhelyi P, Nemeth K, Kurucz I (2006) Inhibition of the MDR1 transporter by new phenothiazine derivatives. Biochem Biophys Res Commun 346(1): 45–50

    Article  CAS  PubMed  Google Scholar 

  21. Meriane M, Tcherkezian J, Webber CA et al (2004) Phosphorylation of DCC by Fyn mediates Netrin-1 signaling in growth cone guidance. J Cell Biol 167(4):687–698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Monroy-Contreras R, Vaca L (2011) Molecular beacons: powerful tools for imaging RNA in living cells. J Nucleic Acids 2011: 741723

    Article  PubMed Central  PubMed  Google Scholar 

  23. Rosenthal EL, Kulbersh BD, King T, Chaudhuri TR, Zinn KR (2007) Use of fluorescent labeled anti-epidermal growth factor receptor antibody to image head and neck squamous cell carcinoma xenografts. Mol Cancer Ther 6(4):1230–1238

    Article  CAS  PubMed  Google Scholar 

  24. O’Brien PJ, Irwin W, Diaz D et al (2006) High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Arch Toxicol 80(9): 580–604

    Article  PubMed  Google Scholar 

  25. Wolf A, Mueller SO, Hewitt P, Pfaller W, Jennings P, Testai E, Bois F, Prieto P, Price A, Lukas A, Richert L, Guillouzo A, Leonard M, Blaauboer BJ, Rosrami A, Reinert K, Honegger P, Cecchelli R, Kopp-Schneider A, Weiss DG, Schroeder O, Huber C, Dekant W (2013) Predict-IV project overview (EU grant 202222): non-animal based toxicity profiling by integrating toxicodynamics and biokinetics. Toxicol Lett 221S, S7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Wolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Uteng, M., Germano, D., Balavenkatraman, K.K., Pognan, F., Wolf, A. (2014). High Content Imaging Approaches for In Vitro Toxicology. In: Bal-Price, A., Jennings, P. (eds) In Vitro Toxicology Systems. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0521-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0521-8_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0520-1

  • Online ISBN: 978-1-4939-0521-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics