Skip to main content

Human Stem/Progenitor Cell-Based Assays for Neurodevelopmental Toxicity Testing

  • Protocol
  • First Online:

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

The developing brain is vulnerable towards compounds interfering with processes explicitly involved in brain development. These processes include neural stem/progenitor cell (NS/PC) proliferation, migration, differentiation, apoptosis as well as myelination, synaptogenesis, and network formation. Due to specific actions of compounds on these processes, which differ from the most common mechanisms of adult neurotoxicity, specific developmental neurotoxicity (DNT) testing is necessary. In view of the large societal impact that only small changes in IQ pose on a population and the financial burdens associated with this drop in societal IQ, the assessment of adverse effects of chemicals on the highly complex process of brain development is even more indispensable. In this chapter, recent developments on human stem/progenitor cell-based assays for DNT testing are reviewed. Thereby, distinct available cell sources as well as diverse culturing methods of these cells are described. Their applications for compound testing are portrayed and finally a summary and brief recommendation on the future of DNT testing by using stem/progenitor cells in vitro is given.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Weiss B (1990) Risk assessment: the insidious nature of neurotoxicity and the aging brain. Neurotoxicology 11(2):305–313

    CAS  PubMed  Google Scholar 

  2. Hass U (2006) The need for developmental neurotoxicity studies in risk assessment for developmental toxicity. Reprod Toxicol 22:148–156

    CAS  PubMed  Google Scholar 

  3. Rodier PM (1995) Developing brain as a target of toxicity. Environ Health Perspect 103(Suppl 6):73–76

    PubMed Central  PubMed  Google Scholar 

  4. Kimmel CA (1988) Current status of behavioral teratology: science and regulation. Crit Rev Toxicol 19:1–10

    CAS  PubMed  Google Scholar 

  5. Rodier PM (1980) Chronology of neuron development: animal studies and their clinical implications. Dev Med Child Neurol 22:525–545

    CAS  PubMed  Google Scholar 

  6. Rice D, Baron S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108(S3):511–533

    PubMed Central  PubMed  Google Scholar 

  7. Kabat K, Buterbaugh GG, Eccles CU (1985) Methylazoxymethanol as a developmental model of neurotoxicity. Neurobehav Toxicol Teratol 7(5):519–525

    CAS  PubMed  Google Scholar 

  8. Rodier PM (1986) Behavioral effects of antimitotic agents administered during neurogenesis. In: Riley EP, Vorhees CV (eds) Handbook of behavioral teratology. Plenum Press, New York, pp 185–209

    Google Scholar 

  9. Weiss B (1988) Implications of behavioural teratology for assessing the risks posed by environmental and therapeutic chemicals. Progr Brain Res 73 Chapter 3:39–49

    Google Scholar 

  10. Rice DC (1998) Issues in developmental neurotoxicology: interpretation and implications of the data. Can J Public Health 89(Suppl 1):S31–S40

    PubMed  Google Scholar 

  11. Grandjean P, Landrigan PJ (2006) Developmental neurotoxicity of industrial chemicals. Lancet 368(9553):2167–2178

    CAS  PubMed  Google Scholar 

  12. Nelson BK (1991) Evidence for behavioral teratogenicity in humans. J Appl Toxicol 11:33–37

    CAS  PubMed  Google Scholar 

  13. Roeleveld N, Zielhuis GA, Gabreels F (1990) Occupational exposure and defects of the central nervous system in offspring: a review. Br J Ind Med 47:580–588

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Kimmel CA, Gaylor WG (1988) Issues in qualitative and quantitative risk analysis for developmental toxicology. Risk Anal 8:15–20

    CAS  PubMed  Google Scholar 

  15. Rovida C, Longo F, Rabbit RR (2011) How are reproductive toxicity and developmental toxicity addressed in REACH dossiers? ALTEX 28:273–294

    PubMed  Google Scholar 

  16. Coecke S, Eskes C, Gartlon J, Kinsner A, Price A, van Vliet E, Prieto P, Boveri M, Bremer S, Adler S, Pellizzer C, Wendel A, Hartung T (2006) The value of alternative testing for neurotoxicity in the context of regulatory needs. Environ Toxicol Pharmacol 21(2):153–167

    CAS  PubMed  Google Scholar 

  17. Coecke S, Goldberg AM, Allen S, Buzanska L, Calamandrei G, Crofton K, Hareng L, Hartung T, Knaut H, Honegger P, Jacobs M, Lein P, Li A, Mundy W, Owen D, Schneider S, Silbergeld E, Reum T, Trnovec T, Monnet-Tschudi F, Bal-Price A (2007) Workgroup report: incorporating in vitro alternative methods for developmental neurotoxicity into international hazard and risk assessment strategies. Environ Health Perspect 115(6):924–931

    PubMed Central  PubMed  Google Scholar 

  18. Lein P, Silbergeld E, Locke P, Goldberg AM (2005) In vitro and other alternative approaches to developmental neurotoxicity testing (DNT). Environ Toxicol Pharmacol 19(3):735–744

    CAS  PubMed  Google Scholar 

  19. Lein P, Locke P, Goldberg A (2007) Meeting report: alternatives for developmental neurotoxicity testing. Environ Health Perspect 115(5):764–768

    PubMed Central  PubMed  Google Scholar 

  20. Choi BH (1989) The effects of methylmercury on the developing brain. Prog Neurobiol 32(6):447–470

    CAS  PubMed  Google Scholar 

  21. McCauley PT, Bull RJ, Tonti AP, Lutkenhoff SD, Meister MV, Doerger JU, Stober JA (1982) The effect of prenatal and postnatal lead exposure on neonatal synaptogenesis in rat cerebral cortex. J Toxicol Environ Health 10:639–651

    CAS  PubMed  Google Scholar 

  22. Chattopadhyay S, Bhaumik S, Nag Chaudhury A, Das Gupta S (2002) Arsenic induced changes in growth development and apoptosis in neonatal and adult brain cells in vivo and in tissue culture. Toxicol Lett 128(1–3):73–84

    CAS  PubMed  Google Scholar 

  23. Oberto A, Marks N, Evans HL, Guidoti A (1996) Lead (Pb+2) promotes apoptosis in newborn rat cerebellar neurons: pathological implications. J Pharmacol Exp Ther 279:435–442

    CAS  PubMed  Google Scholar 

  24. Breier JM, Gassmann K, Kayser R, Stegeman H, De Groot D, Fritsche E, Shafer TJ (2010) Neural progenitor cells as models for high-throughput screens of developmental neurotoxicity: state of the science. Neurotoxicol Teratol 32(1):4–15

    CAS  PubMed  Google Scholar 

  25. Doi K (2011) Mechanisms of neurotoxicity induced in the developing brain of mice and rats by DNA-damaging chemicals. J Toxicol Sci 36(6):695–712

    CAS  PubMed  Google Scholar 

  26. Kuegler PB, Zimmer B, Waldmann T, Baudis B, Ilmjärv S, Hescheler J, Gaughwin P, Brundin P, Mundy W, Bal-Price AK, Schrattenholz A, Krause KH, van Thriel C, Rao MS, Kadereit S, Leist M (2010) Markers of murine embryonic and neural stem cells, neurons and astrocytes: reference points for developmental neurotoxicity testing. ALTEX 27(1):17–42

    PubMed  Google Scholar 

  27. Gassmann K, Abel J, Bothe H, Haarmann-Stemmann T, Merk HF, Quasthoff KN, Rockel TD, Schreiber T, Fritsche E (2010) Species-specific differential AhR expression protects human neural progenitor cells against developmental neurotoxicity of PAHs. Environ Health Perspect 118(11):1571–1577

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Kim MS, Park HR, Chung HY, Kim HS, Yu BP, Yang HS, Lee J (2011) Organic solvent metabolite, 1,2-diacetylbenzene, impairs neural progenitor cells and hippocampal neurogenesis. Chem Biol Interact 194(2–3):139–147

    CAS  PubMed  Google Scholar 

  29. Rocha RA, Gimeno-Alcañiz JV, Martín-Ibañez R, Canals JM, Vélez D, Devesa V (2011) Arsenic and fluoride induce neural progenitor cell apoptosis. Toxicol Lett 203(3):237–244

    CAS  PubMed  Google Scholar 

  30. Jergil M, Forsberg M, Salter H, Stockling K, Gustafson AL, Dencker L, Stigson M (2011) Short-time gene expression response to valproic acid and valproic acid analogs in mouse embryonic stem cells. Toxicol Sci 121(2):328–342

    CAS  PubMed  Google Scholar 

  31. Honegger P, Defaux A, Monnet-Tschudi F, Zurich MG (2011) Preparation, maintenance, and use of serum-free aggregating brain cell cultures. Methods Mol Biol 758:81–97

    CAS  PubMed  Google Scholar 

  32. Pennings JL, Theunissen PT, Piersma AH (2012) An optimized gene set for transcriptomics based neurodevelopmental toxicity prediction in the neural embryonic stem cell test. Toxicology 300(3):158–167

    CAS  PubMed  Google Scholar 

  33. Visan A, Hayess K, Sittner D, Pohl EE, Riebeling C, Slawik B, Gulich K, Oelgeschläger M, Luch A, Seiler AE (2012) Neural differentiation of mouse embryonic stem cells as a tool to assess developmental neurotoxicity in vitro. Neurotoxicology 33(5):1135–1146

    CAS  PubMed  Google Scholar 

  34. Lundqvist J, Andaloussi-Lilja J, Svensson C, Gustafsson Dorfh H, Forsby A (2013) Optimisation of culture conditions for differentiation of C17.2 neural stem cells to be used for in vitro toxicity tests. Toxicol In Vitro 27(5):1565–1569

    CAS  PubMed  Google Scholar 

  35. Go HS, Kim KC, Choi CS, Jeon SJ, Kwon KJ, Han SH, Lee J, Cheong JH, Ryu JH, Kim CH, Ko KH, Shin CY (2012) Prenatal exposure to valproic acid increases the neural progenitor cell pool and induces macrocephaly in rat brain via a mechanism involving the GSK3β/β-catenin pathway. Neuropharmacology 63(6):1028–1041

    CAS  PubMed  Google Scholar 

  36. L’Episcopo F, Tirolo C, Testa N, Caniglia S, Morale MC, Impagnatiello F, Pluchino S, Marchetti B (2013) Aging-induced Nrf2-ARE pathway disruption in the subventricular zone drives neurogenic impairment in parkinsonian mice via PI3K-Wnt/β-catenin dysregulation. J Neurosci 33(4):1462–1485

    PubMed Central  PubMed  Google Scholar 

  37. Shanks N, Greek R, Greek J (2009) Are animal models predictive for humans? Philos Ethics Humanit Med 4:2

    PubMed Central  PubMed  Google Scholar 

  38. Leist M, Hartung T (2013) Inflammatory findings on species extrapolations: humans are definitely no 70-kg mice. Arch Toxicol 87:563–567

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Yu Y, Ping J, Chen H, Jiao L, Zheng S, Han ZG, Hao P, Huang J (2010) A comparative analysis of liver transcriptome suggests divergent liver function among human, mouse and rat. Genomics 96(5):281–289

    CAS  PubMed  Google Scholar 

  40. Abbott BD, Held GA, Wood CR, Buckalew AR, Brown JG, Schmid J (1999) AhR, ARNT, and CYP1A1 mRNA quantitation in cultured human embryonic palates exposed to TCDD and comparison with mouse palate in vivo and in culture. Toxicol Sci 47(1):62–75

    CAS  PubMed  Google Scholar 

  41. Rosenberg PA, Aizenman E (1989) Hundred-fold increase in neuronal vulnerability to glutamate toxicity in astrocyte-poor cultures of rat cerebral cortex. Neurosci Lett 103(2):162–168

    CAS  PubMed  Google Scholar 

  42. Brooks WJ, Jarvis MF, Wagner GC (1989) Astrocytes as a primary locus for the conversion MPTP into MPP+. J Neural Transm 76(1):1–12

    CAS  PubMed  Google Scholar 

  43. Ni M, Li X, Rocha JB, Farina M, Aschner M (2012) Glia and methylmercury neurotoxicity. J Toxicol Environ Health A 75(16–17):1091–1101

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Wang Y, Zhao F, Liao Y, Jin Y, Sun G (2013) Effects of arsenite in astrocytes on neuronal signaling transduction. Toxicology 303:43–53

    CAS  PubMed  Google Scholar 

  45. Reynolds BA, Rietze RL (2005) Neural stem cells and neurospheres—re-evaluating the relationship. Nat Methods 2:333–336

    CAS  PubMed  Google Scholar 

  46. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A 97(26):14720–14725

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Pizzi R, Cino G, Gelain F, Rossetti D, Vescovi A (2007) Learning in human neural networks on microelectrode arrays. Biosystems 88(1–2):1–15

    CAS  PubMed  Google Scholar 

  48. Heikkilä TJ, Ylä-Outinen L, Tanskanen JM, Lappalainen RS, Skottman H, Suuronen R, Mikkonen JE, Hyttinen JA, Narkilahti S (2009) Human embryonic stem cell-derived neuronal cells form spontaneously active neuronal networks in vitro. Exp Neurol 218(1):109–116

    PubMed  Google Scholar 

  49. Kapucu FE, Tanskanen JM, Mikkonen JE, Ylä-Outinen L, Narkilahti S, Hyttinen JA (2012) Burst analysis tool for developing neuronal networks exhibiting highly varying action potential dynamics. Front Comput Neurosci 6:38

    PubMed Central  PubMed  Google Scholar 

  50. Spielmann H (2009) The way forward in reproductive/developmental toxicity testing. Altern Lab Anim 37(6):641–656

    CAS  PubMed  Google Scholar 

  51. Wakeman DR, Hofmann MR, Redmond DE Jr, Teng YD, Snyder EY (2009) Long-term multilayer adherent network (MAN) expansion, maintenance, and characterization, chemical and genetic manipulation, and transplantation of human fetal forebrain neural stem cells. Curr Protoc Stem Cell Biol Chapter 2:Unit2D.3. doi: 10.1002/9780470151808.sc02d03s9

  52. Campos LS (2004) Neurospheres: insights into neural stem cell biology. J Neurosci Res 78(6):761–769

    CAS  PubMed  Google Scholar 

  53. Reynolds BA, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12:4565–4574

    CAS  PubMed  Google Scholar 

  54. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    CAS  PubMed  Google Scholar 

  55. Svendsen CN, ter Borg MG, Armstrong RJ, Rosser AE, Chandran S, Ostenfeld T, Caldwell MA (1998) A new method for the rapid and long term growth of human neural precursor cells. J Neurosci Methods 85(2):141–152

    CAS  PubMed  Google Scholar 

  56. Fritsche E, Cline JE, Nguyen NH, Scanlan TS, Abel J (2005) Polychlorinated biphenyls disturb differentiation of normal human neural progenitor cells: clue for involvement of thyroid hormone receptors. Environ Health Perspect 113(7):871–876

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Ebert AD, McMillan EL, Svendsen CN (2008) Isolating, expanding, and infecting human and rodent fetal neural progenitor cells. Curr Protoc Stem Cell Biol Chapter 2:Unit 2D.2

    Google Scholar 

  58. Moors M, Rockel TD, Abel J, Cline JE, Gassmann K, Schreiber T, Schuwald J, Weinmann N, Fritsche E (2009) Human neurospheres as three-dimensional cellular systems for developmental neurotoxicity testing. Environ Health Perspect 117(7):1131–1138

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Tropepe V, Sibilia M, Ciruna BG, Rossant J, Wagner EF, van der Kooy D (1999) Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol 208:166–188

    CAS  PubMed  Google Scholar 

  60. Irvin DK, Dhaka A, Hicks C, Weinmaster G, Kornblum HI (2003) Extrinsic and intrinsic factors governing cell fate in cortical progenitor cultures. Dev Neurosci 25:162–172

    CAS  PubMed  Google Scholar 

  61. Parmar M, Skogh C, Bjorklund A, Campbell K (2002) Regional specification of neurosphere cultures derived from subregions of the embryonic telencephalon. Mol Cell Neurosci 21:645–656

    CAS  PubMed  Google Scholar 

  62. Hitoshi S, Tropepe V, Ekker M, van der Kooy D (2002) Neural stem cell lineages are regionally specified, but not committed, within distinct compartments of the developing brain. Development 129:233–244

    CAS  PubMed  Google Scholar 

  63. Klein C, Butt SJ, Machold RP, Johnson JE, Fishell G (2005) Cerebellum- and forebrain-derived stem cells possess intrinsic regional character. Development 132:4497–4508

    CAS  PubMed  Google Scholar 

  64. Ostenfeld T, Joly E, Tai YT, Peters A, Caldwell M, Jauniaux E, Svendsen CN (2002) Regional specification of rodent and human neurospheres. Brain Res Dev Brain Res 134(1–2):43–55

    CAS  PubMed  Google Scholar 

  65. Zappone MV, Galli R, Catena R, Meani N, De Biasi S, Mattei E, Tiveron C, Vescovi AL, Lovell-Badge R, Ottolenghi S, Nicolis SK (2000) Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development 127:2367–2382

    CAS  PubMed  Google Scholar 

  66. Elliott NT, Yuan F (2011) A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci 100(1):59–74

    CAS  PubMed  Google Scholar 

  67. Camarillo C, Miranda RC (2008) Ethanol exposure during neurogenesis induces persistent effects on neural maturation: evidence from an ex vivo model of fetal cerebral cortical neuroepithelial progenitor maturation. Gene Expr 14(3):159–171

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Morales-Garcia JA, Luna-Medina R, Alfaro-Cervello C, Cortes-Canteli M, Santos A, Garcia-Verdugo JM, Perez-Castillo A (2011) Peroxisome proliferator-activated receptor γ ligands regulate neural stem cell proliferation and differentiation in vitro and in vivo. Glia 59(2):293–307

    PubMed  Google Scholar 

  69. Fritsche E, Gassmann K, Schreiber T (2011) Neurospheres as a model for developmental neurotoxicity testing. Methods Mol Biol 758:99–114

    CAS  PubMed  Google Scholar 

  70. Carpenter MK, Cui X, Hu ZY, Jackson J, Sherman S, Seiger A, Wahlberg LU (1999) In vitro expansion of a multipotent population of human neural progenitor cells. Exp Neurol 158(2):265–278

    CAS  PubMed  Google Scholar 

  71. Tamaki S, Eckert K, He D, Sutton R, Doshe M, Jain G, Tushinski R, Reitsma M, Harris B, Tsukamoto A, Gage F, Weissman I, Uchida N (2002) Engraftment of sorted/expanded human central nervous system stem cells from fetal brain. J Neurosci Res 69(6):976–986

    CAS  PubMed  Google Scholar 

  72. Hook L, Vives J, Fulton N, Leveridge M, Lingard S, Bootman MD, Falk A, Pollard SM, Allsopp TE, Dalma-Weiszhausz D, Tsukamoto A, Uchida N, Gorba T (2011) Non-immortalized human neural stem (NS) cells as a scalable platform for cellular assays. Neurochem Int 59(3):432–444

    CAS  PubMed  Google Scholar 

  73. Barraud P, Stott S, Møllgård K, Parmar M, Björklund A (2007) In vitro characterization of a human neural progenitor cell coexpressing SSEA4 and CD133. J Neurosci Res 85(2):250–259

    CAS  PubMed  Google Scholar 

  74. Sanchez-Ramos JR, Song S, Kamath SG, Zigova T, Willing A, Cardozo-Pelaez F, Stedeford T, Chopp M, Sanberg PR (2001) Expression of neural markers in human umbilical cord blood. Exp Neurol 171:109–115

    CAS  PubMed  Google Scholar 

  75. Buzanska L, Machaj EK, Zablocka B, Pojda Z, Domanska-Janik K (2002) Human cord blood-derived cells attain neuronal and glial features in vitro. J Cell Sci 115:2131–2138

    CAS  PubMed  Google Scholar 

  76. Buzańska L, Habich A, Jurga M, Sypecka J, Domańska-Janik K (2005) Human cord blood-derived neural stem cell line–possible implementation in studying neurotoxicity. Toxicol In Vitro 19(7):991–999

    PubMed  Google Scholar 

  77. Sun W, Buzanska L, Domanska-Janik K, Salvi RJ, Stachowiak MK (2005) Voltage-sensitive and ligand-gated channels in differentiating neural stem-like cells derived from the nonhematopoietic fraction of human umbilical cord blood. Stem Cells 23(7):931–945

    CAS  PubMed  Google Scholar 

  78. Jurga M, Markiewicz I, Sarnowska A, Habich A, Kozlowska H, Lukomska B, Buzanska L, Domanska-Janik K (2006) Neurogenic potential of human umbilical cord blood: neural-like stem cells depend on previous long-term culture conditions. J Neurosci Res 83(4):627–637

    CAS  PubMed  Google Scholar 

  79. Reubinoff BE, Itsykson P, Turetsky T, Pera MF, Reinhartz E, Itzik A, Ben-Hur T (2001) Neural progenitors from human embryonic stem cells. Nat Biotechnol 19(12):1134–1140

    CAS  PubMed  Google Scholar 

  80. Koch P, Opitz T, Steinbeck JA, Ladewig J, Brüstle O (2009) A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc Natl Acad Sci U S A 106(9):3225–3230

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Han Y, Miller A, Mangada J, Liu Y, Swistowski A, Zhan M, Rao MS, Zeng X (2009) Identification by automated screening of a small molecule that selectively eliminates neural stem cells derived from hESCs but not dopamine neurons. PLoS One 4(9):e7155

    PubMed Central  PubMed  Google Scholar 

  82. Bertram CM, Hawes SM, Egli S, Peh SL, Dottori M, Kees UR, Dallas PB (2010) Effective adenovirus-mediated gene transfer into neural stem cells derived from human embryonic stem cells. Stem Cells Dev 19(4):569–578

    CAS  PubMed  Google Scholar 

  83. Woo SM, Kim J, Han HW, Chae JI, Son MY, Cho S, Chung HM, Han YM, Kang YK (2009) Notch signaling is required for maintaining stem-cell features of neuroprogenitor cells derived from human embryonic stem cells. BMC Neurosci 10:97

    PubMed Central  PubMed  Google Scholar 

  84. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27(3):275–280

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Jagtap S, Meganathan K, Gaspar J, Wagh V, Winkler J, Hescheler J, Sachinidis A (2011) Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol 162(8):1743–1756

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Liu J, Githinji J, Mclaughlin B, Wilczek K, Nolta J (2012) Role of miRNAs in neuronal differentiation from human embryonic stem cell-derived neural stem cells. Stem Cell Rev 8(4):1129–1137

    CAS  PubMed  Google Scholar 

  87. Birenboim R, Markus A, Goldstein RS (2013) Simple generation of neurons from human embryonic stem cells using agarose multiwell dishes. J Neurosci Methods 214(1):9–14

    PubMed  Google Scholar 

  88. Krug AK, Kolde R, Gaspar JA, Rempel E, Balmer NV, Meganathan K, Vojnits K, Baquié M, Waldmann T, Ensenat-Waser R, Jagtap S, Evans RM, Julien S, Peterson H, Zagoura D, Kadereit S, Gerhard D, Sotiriadou I, Heke M, Natarajan K, Henry M, Winkler J, Marchan R, Stoppini L, Bosgra S, Westerhout J, Verwei M, Vilo J, Kortenkamp A, Hescheler J, Hothorn L, Bremer S, van Thriel C, Krause KH, Hengstler JG, Rahnenführer J, Leist M, Sachinidis A (2013) Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol 87(1):123–143

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Muotri AR, Nakashima K, Toni N, Sandler VM, Gage FH (2005) Development of functional human embryonic stem cell-derived neurons in mouse brain. Proc Natl Acad Sci U S A 102(51):18644–18648

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Preynat-Seauve O, Suter DM, Tirefort D, Turchi L, Virolle T, Chneiweiss H, Foti M, Lobrinus JA, Stoppini L, Feki A, Dubois-Dauphin M, Krause KH (2009) Development of human nervous tissue upon differentiation of embryonic stem cells in three-dimensional culture. Stem Cells 27(3):509–520

    PubMed  Google Scholar 

  91. Fathi A, Hatami M, Hajihosseini V, Fattahi F, Kiani S, Baharvand H, Salekdeh GH (2011) Comprehensive gene expression analysis of human embryonic stem cells during differentiation into neural cells. PLoS One 6(7):e22856

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Shin S, Sun Y, Liu Y, Khaner H, Svant S, Cai J, Xu QX, Davidson BP, Stice SL, Smith AK, Goldman SA, Reubinoff BE, Zhan M, Rao MS, Chesnut JD (2007) Whole genome analysis of human neural stem cells derived from embryonic stem cells and stem and progenitor cells isolated from fetal tissue. Stem Cells 25(5):1298–1306

    CAS  PubMed  Google Scholar 

  93. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    CAS  PubMed  Google Scholar 

  94. Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2(12):3081–3089

    CAS  PubMed  Google Scholar 

  95. Oh SI, Lee CK, Cho KJ, Lee KO, Cho SG, Hong S (2012) Technological progress in generation of induced pluripotent stem cells for clinical applications. ScientificWorldJournal 2012:417809

    PubMed Central  PubMed  Google Scholar 

  96. Denham M, Dottori M (2011) Neural differentiation of induced pluripotent stem cells. Methods Mol Biol 793:99–110

    CAS  PubMed  Google Scholar 

  97. Du J, Campau E, Soragni E, Ku S, Puckett JW, Dervan PB, Gottesfeld JM (2012) Role of mismatch repair enzymes in GAA·TTC triplet-repeat expansion in Friedreich ataxia induced pluripotent stem cells. J Biol Chem 287(35):29861–29872

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Shofuda T, Fukusumi H, Kanematsu D, Yamamoto A, Yamasaki M, Arita N, Kanemura Y (2013) A method for efficiently generating neurospheres from human-induced pluripotent stem cells using microsphere arrays. Neuroreport 24(2):84–90

    PubMed  Google Scholar 

  99. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA (2013) Cerebral organoids model human brain development and microcephaly. Nature 501(7467):373–379

    CAS  PubMed  Google Scholar 

  100. Eugenin EA, King JE, Hazleton JE, Major EO, Bennett MV, Zukin RS, Berman JW (2011) Differences in NMDA receptor expression during human development determine the response of neurons to HIV-tat-mediated neurotoxicity. Neurotox Res 19(1):138–148

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Vangipuram SD, Grever WE, Parker GC, Lyman WD (2008) Ethanol increases fetal human neurosphere size and alters adhesion molecule gene expression. Alcohol Clin Exp Res 32(2):339–347

    CAS  PubMed  Google Scholar 

  102. Moors M, Cline JE, Abel J, Fritsche E (2007) ERK-dependent and -independent pathways trigger human neural progenitor cell migration. Toxicol Appl Pharmacol 221(1):57–67

    CAS  PubMed  Google Scholar 

  103. Tegenge MA, Rockel TD, Fritsche E, Bicker G (2011) Nitric oxide stimulates human neural progenitor cell migration via cGMP-mediated signal transduction. Cell Mol Life Sci 68(12):2089–2099

    CAS  PubMed  Google Scholar 

  104. Schreiber T, Gassmann K, Götz C, Hübenthal U, Moors M, Krause G, Merk HF, Nguyen NH, Scanlan TS, Abel J, Rose CR, Fritsche E (2010) Polybrominated diphenyl ethers induce developmental neurotoxicity in a human in vitro model: evidence for endocrine disruption. Environ Health Perspect 118(4):572–578

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Jiang YZ, Wang K, Fang R, Zheng J (2010) Expression of aryl hydrocarbon receptor in human placentas and fetal tissues. J Histochem Cytochem 58(8):679–685

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Gassmann K, Baumann J, Giersiefer S, Schuwald J, Schreiber T, Merk HF, Fritsche E (2012) Automated neurosphere sorting and plating by the COPAS large particle sorter is a suitable method for high-throughput 3D in vitro applications. Toxicol In Vitro 26(6):993–1000

    CAS  PubMed  Google Scholar 

  107. Buzanska L, Sypecka J, Nerini-Molteni S, Compagnoni A, Hogberg HT, del Torchio R, Domanska-Janik K, Zimmer J, Coecke S (2009) A human stem cell-based model for identifying adverse effects of organic and inorganic chemicals on the developing nervous system. Stem Cells 27(10):2591–2601

    CAS  PubMed  Google Scholar 

  108. Stummann TC, Hareng L, Bremer S (2009) Hazard assessment of methylmercury toxicity to neuronal induction in embryogenesis using human embryonic stem cells. Toxicology 257(3):117–126

    CAS  PubMed  Google Scholar 

  109. Bosnjak ZJ, Yan Y, Canfield S, Muravyeva MY, Kikuchi C, Wells CW, Corbett JA, Bai X (2012) Ketamine induces toxicity in human neurons differentiated from embryonic stem cells via mitochondrial apoptosis pathway. Curr Drug Saf 7(2):106–119

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Colleoni S, Galli C, Gaspar JA, Meganathan K, Jagtap S, Hescheler J, Sachinidis A, Lazzari G (2011) Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci 124(2):370–377

    CAS  PubMed  Google Scholar 

  111. Hoelting L, Scheinhardt B, Bondarenko O, Schildknecht S, Kapitza M, Tanavde V, Tan B, Lee QY, Mecking S, Leist M, Kadereit S (2013) A 3-dimensional human embryonic stem cell (hESC)-derived model to detect developmental neurotoxicity of nanoparticles. Arch Toxicol 87(4):721–733

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Kumar KK, Aboud AA, Bowman AB (2012) The potential of induced pluripotent stem cells as a translational model for neurotoxicological risk. Neurotoxicology 33(3):518–529

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Fritsche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fritsche, E. (2014). Human Stem/Progenitor Cell-Based Assays for Neurodevelopmental Toxicity Testing. In: Bal-Price, A., Jennings, P. (eds) In Vitro Toxicology Systems. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0521-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0521-8_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0520-1

  • Online ISBN: 978-1-4939-0521-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics