Skip to main content

Current and Emerging In Vitro Methods for Genotoxicity and Carcinogenicity

  • Protocol
  • First Online:
In Vitro Toxicology Systems

Abstract

The evaluation of genotoxicity and carcinogenicity is an essential prerequisite for the assessment of pharmaceuticals’, industrial chemicals’, and consumer products’ potential hazard and for their marketing authorization. A number of well-established in vitro and in vivo testing methods are available and able to predict genotoxic and carcinogenic potential; yet research is ongoing and is aimed at the development of a new generation of in vitro tests to enhance their predictivity and performance and to reduce the number of animals used.

In this context, this chapter is meant to review the existing in vitro testing methods and update on the emerging in vitro approaches for the assessment of genotoxicity and carcinogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is noted that not all genotoxic events lead to mutagenicity and that some prefer the terminology “mutagenic mode of action.” However, genotoxicity assays are still commonly used to distinguish those chemicals with the potential to directly affect the integrity of DNA from those that do not, so for the sake of simplicity, the text throughout refers to genotoxic versus non-genotoxic carcinogens.

References

  1. ICH S2(R1) (2012) ICH guideline S2 (R1) on genotoxicity testing and data interpretation for pharmaceuticals intended for human use. EMA/CHMP/ICH/126642/2008:1–28

    Google Scholar 

  2. Regulation (EC) No 283/2013 (2013) Commission Regulation (EU) No 283/2013 setting out the data requirements for active substances, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market. OJ L 93 of 01032013:1–84

    Google Scholar 

  3. Regulation (EC) No 284/2013 (2013) Commission Regulation (EU) No 284/2013 setting out the data requirements for plant protection products, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market (Text with EEA relevance). OJ L 93 of 01032013:85–152

    Google Scholar 

  4. Regulation (EC) No 528/2012 (2012) Regulation of the European Parliament and of the Council of 22 May 2012 concerning the making available on the market and use of biocidal products (Text with EEA relevance). OJ L 167 of 22052012:1–123

    Google Scholar 

  5. Regulation (EC) No 1107/2009b (2009) Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. OJ L 309 of 24112009:1–50

    Google Scholar 

  6. Regulation (EC) No 1223/2009 (2009) Regulation of the European Parliament and of the Council of 30 November 2009 on cosmetic products (Text with EEA relevance). OJ L 342 of 22122009

    Google Scholar 

  7. Regulation (EC) No 1907/2006 (2006) Regulation (EC) No 1907/2006 of the European Parliament and the Council of 18 December 2006 concerning the registration, evaluation, authorisation and restriction of chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. OJ L 396 of 30122006:1–849

    Google Scholar 

  8. VICH (2004) GL23, (Safety: Genotoxicity) studies to evaluate the safety of residues of veterinary drugs in human food: genotoxicity testing. Revision 1 May 2004 for implementation at step 7

    Google Scholar 

  9. VICH (2005) GL28 (SAFETY: CARCINOGENICITY) Studies to evaluate the safety of residues of veterinary drugs in human food: carcinogenicity testing. February 2005 for implementation at step 7—final

    Google Scholar 

  10. Regulation (EC) No 1272/2008 (2008) Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353 of 16122008:1–1355

    Google Scholar 

  11. GHS (2011) Globally harmonized system of classification and labelling of chemicals, United Nations. ST/SG/AC10/30/Rev4

    Google Scholar 

  12. SCCS/1501/12 (2012) The SCCS’S notes of guidance for the testing of cosmetics substances and their safety evaluation. 8th Revision. SCCS notes of guidance:1–117

    Google Scholar 

  13. Adler S, Basketter D, Creton S, Pelkonen O, van Benthem J et al (2011) Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010. Arch Toxicol 85:367–485

    CAS  PubMed  Google Scholar 

  14. Erickson RP (2010) Somatic gene mutation and human disease other than cancer: an update. Mutat Res 705:96–106

    CAS  PubMed  Google Scholar 

  15. De Flora S, Izzotti A (2007) Mutagenesis and cardiovascular diseases molecular mechanisms, risk factors, and protective factors. Mutat Res 621(1–2):5–17

    PubMed  Google Scholar 

  16. Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361:1475–1485

    CAS  PubMed  Google Scholar 

  17. Slatter MA, Gennery AR (2010) Primary immunodeficiencies associated with DNA-repair disorders. Expert Rev Mol Med 12:e9

    PubMed  Google Scholar 

  18. Frank SA (2010) Evolution in health and medicine Sackler colloquium: somatic evolutionary genomics: mutations during development cause highly variable genetic mosaicism with risk of cancer and neurodegeneration. Proc Natl Acad Sci U S A 107(Suppl 1):1725–1730

    CAS  PubMed Central  PubMed  Google Scholar 

  19. EFSA (2011) Scientific opinion—guidance on the risk assessment of genetically modified microorganisms and their products intended for food and feed use. EFSA J 9:1–54

    Google Scholar 

  20. ECHA (2012) Guidance on information requirements and chemical safety assessment Chapter R.7a: endpoint specific guidance version 2.0 November 2012, R.7.7. Mutagenicity and carcinogenicity. http://ihcp.jrc.ec.europa.eu/our_labs/eurl-ecvam/eurl-ecvam-recommendations/files-bhas/EURL_ECVAM_Recommendation_Bhas-CTA_2013.pdf

  21. COM (2011) Guidance on a Strategy for Testing of Chemicals for Mutagenicity. Committee on Mutagenicity of Chemicals in Food, Consumer Products and the Environment (COM). Department of Health, London. http://www.iacom.org.uk/guidstate/documents/COMGuidanceFINAL2.pdf

  22. Loeb LA, Harris CC (2008) Advances in chemical carcinogenesis: a historical review and prospective. Cancer Res 68:6863–6872

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Loeb LA, Loeb KR, Anderson JP (2003) Multiple mutations and cancer. Proc Natl Acad Sci U S A 100:776–781

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Sarasin A (2003) An overview of the mechanisms of mutagenesis and carcinogenesis. Mutat Res 544:99–106

    CAS  PubMed  Google Scholar 

  25. Markowitz SD, Bertagnolli MM (2009) Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med 361: 2449–2460

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Cunningham D, Atkin W, Lenz HJ, Lynch HT, Minsky B et al (2010) Colorectal cancer. Lancet 375:1030–1047

    PubMed  Google Scholar 

  27. Migheli F, Migliore L (2012) Epigenetics of colorectal cancer. Clin Genet 81:312–318

    CAS  PubMed  Google Scholar 

  28. Lopez-Lazaro M (2010) A new view of carcinogenesis and an alternative approach to cancer therapy. Mol Med 16:144–153

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Via LD, Garcia-Argaez AN, Martinez-Vazquez M, Grancara S, Martinis P, et al (2014) Mitochondrial permeability transition as target of anticancer drugs. Curr Pharm Des 20:223–244

    Google Scholar 

  30. Paules RS, Aubrecht J, Corvi R, Garthoff B, Kleinjans JC (2011) Moving forward in human cancer risk assessment. Environ Health Perspect 119:739–743

    PubMed Central  PubMed  Google Scholar 

  31. Knight A, Bailey J, Balcombe J (2005) Which drugs cause cancer? For BMJ 331:E389–E391

    PubMed  Google Scholar 

  32. Knight A, Bailey J, Balcombe J (2006) Animal carcinogenicity studies: implications for the REACH system. Altern Lab Anim 34(Suppl 1):139–147

    CAS  PubMed  Google Scholar 

  33. Kirkland D, Aardema M, Henderson L, Muller L (2005) Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens I. Sensitivity, specificity and relative predictivity. Mutat Res 584:1–256

    CAS  PubMed  Google Scholar 

  34. Kirkland D, Pfuhler S, Tweats D, Aardema M, Corvi R et al (2007) How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary follow-up animal tests: Report of an ECVAM Workshop. Mutat Res 628:31–55

    CAS  PubMed  Google Scholar 

  35. Parry JM, Parry E, Phrakonkham P, Corvi R (2010) Analysis of published data for top concentration considerations in mammalian cell genotoxicity testing. Mutagenesis 25: 531–538

    CAS  PubMed  Google Scholar 

  36. Kirkland D, Fowler P (2010) Further analysis of Ames-negative rodent carcinogens that are only genotoxic in mammalian cells in vitro at concentrations exceeding 1 mM, including retesting of compounds of concern. Mutagenesis 25:539–553

    CAS  PubMed  Google Scholar 

  37. Fowler P, Smith K, Young J, Jeffrey L, Kirkland D et al (2012) Reduction of misleading (“false”) positive results in mammalian cell genotoxicity assays. I. Choice of cell type. Mutat Res 742:11–25

    CAS  PubMed  Google Scholar 

  38. Fowler P, Smith R, Smith K, Young J, Jeffrey L et al (2012) Reduction of misleading (“false”) positive results in mammalian cell genotoxicity assays. II. Importance of accurate toxicity measurement. Mutat Res 747: 104–117

    CAS  PubMed  Google Scholar 

  39. OECD (1997) Test No. 471: Bacterial Reverse Mutation Test: OECD publishing

    Google Scholar 

  40. Ames BN (1971) The detection of chemical mutagens with enteric bacteria. In: Hollaender A (ed) Chemical mutagens, principles and methods for their detection. Plenum, New York, pp 267–282

    Google Scholar 

  41. McCann J, Ames BN (1976) Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals: discussion. Proc Natl Acad Sci U S A 73: 950–954

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Mortelmans K, Zeiger E (2000) The Ames Salmonella/microsome mutagenicity assay. Mutat Res 455:29–60

    CAS  PubMed  Google Scholar 

  43. Gatehouse D, Haworth S, Cebula T, Gocke E, Kier L et al (1994) Recommendations for the performance of bacterial mutation assays. Mutat Res 312:217–233

    CAS  PubMed  Google Scholar 

  44. Wilcox P, Naidoo A, Wedd DJ, Gatehouse DG (1990) Comparison of Salmonella typhimurium TA102 with Escherichia coli WP2 tester strains. Mutagenesis 5:285–291

    CAS  PubMed  Google Scholar 

  45. Clare G (2012) The in vitro mammalian chromosome aberration test. Methods Mol Biol 817:69–91

    CAS  PubMed  Google Scholar 

  46. OECD (1997) Test No. 473: In Vitro Mammalian Chromosome Aberration Test: OECD Publishing

    Google Scholar 

  47. Hozier J, Sawyer J, Clive D, Moore M (1982) Cytogenetic distinction between the TK + and TK− chromosomes in the L5178Y TK+/− 3.7.2C mouse-lymphoma cell line. Mutat Res 105:451–456

    CAS  PubMed  Google Scholar 

  48. Sawyer J, Moore MM, Clive D, Hozier J (1985) Cytogenetic characterization of the L5178Y TK+/−3.7.2C mouse lymphoma cell line. Mutat Res 147:243–253

    CAS  PubMed  Google Scholar 

  49. Zhang LS, Honma M, Matsuoka A, Suzuki T, Sofuni T et al (1996) Chromosome painting analysis of spontaneous and methyl methanesulfonate-induced trifluorothymidine-resistant L5178Y cell colonies. Mutat Res 370:181–190

    CAS  PubMed  Google Scholar 

  50. Clive D, Glover P, Applegate M, Hozier J (1990) Molecular aspects of chemical mutagenesis in L5178Y/tk +/− mouse lymphoma cells. Mutagenesis 5:191–197

    CAS  PubMed  Google Scholar 

  51. Applegate ML, Moore MM, Broder CB, Burrell A, Juhn G et al (1990) Molecular dissection of mutations at the heterozygous thymidine kinase locus in mouse lymphoma cells. Proc Natl Acad Sci U S A 87:51–55

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Moore MM, Honma M, Clements J, Bolcsfoldi G, Burlinson B et al (2007) Mouse lymphoma thymidine kinase gene mutation assay: meeting of the International Workshop on Genotoxicity Testing, San Francisco, 2005, recommendations for 24-h treatment. Mutat Res 627:36–40

    CAS  PubMed  Google Scholar 

  53. Wang J, Sawyer JR, Chen L, Chen T, Honma M et al (2009) The mouse lymphoma assay detects recombination, deletion, and aneuploidy. Toxicol Sci 109:96–105

    CAS  PubMed  Google Scholar 

  54. OECD (1997) Test No. 476: In Vitro Mammalian Cell Gene Mutation Test: OECD Publishing

    Google Scholar 

  55. Johnson GE (2012) Mammalian cell HPRT gene mutation assay: test methods. Methods Mol Biol 817:55–67

    CAS  PubMed  Google Scholar 

  56. Lloyd M, Kidd D (2012) The mouse lymphoma assay. Methods Mol Biol 817:35–54

    CAS  PubMed  Google Scholar 

  57. Corvi R, Ahr HJ, Albertini S, Blakey DH, Clerici L et al (2006) Meeting report: validation of toxicogenomics-based test systems: ECVAM-ICCVAM/NICEATM considerations for regulatory use. Environ Health Perspect 114:420–429

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Corvi R, Albertini S, Hartung T, Hoffmann S, Maurici D et al (2008) ECVAM retrospective validation of in vitro micronucleus test (MNT). Mutagenesis 23:271–283

    CAS  PubMed Central  PubMed  Google Scholar 

  59. ECVAM (2006) Statement by the European Centre for the Validation of Alternative Methods (ECVAM) Scientific Advisory Committee (ESAC) on the scientific validity of the in vitro micronucleus test as an alternative to the in vitro chromosome aberration assay for genotoxicity testing. ESAC 25th meeting. http://ecvamjrcit/indexhtm. Accessed 16–17 Nov 2006

    Google Scholar 

  60. OECD (2010) Test No. 487: In Vitro Mammalian Cell Micronucleus Test: OECD Publishing

    Google Scholar 

  61. Zhang LS, Honma M, Hayashi M, Suzuki T, Matsuoka A et al (1995) A comparative study of TK6 human lymphoblastoid and L5178Y mouse lymphoma cell lines in the in vitro micronucleus test. Mutat Res 347:105–115

    CAS  PubMed  Google Scholar 

  62. Ehrlich V, Darroudi F, Uhl M, Steinkellner H, Zsivkovits M et al (2002) Fumonisin B(1) is genotoxic in human derived hepatoma (HepG2) cells. Mutagenesis 17:257–260

    CAS  PubMed  Google Scholar 

  63. Knasmuller S, Mersch-Sundermann V, Kevekordes S, Darroudi F, Huber WW et al (2004) Use of human-derived liver cell lines for the detection of environmental and dietary genotoxicants; current state of knowledge. Toxicology 198:315–328

    CAS  PubMed  Google Scholar 

  64. Westerink WM, Schirris TJ, Horbach GJ, Schoonen WG (2011) Development and validation of a high-content screening in vitro micronucleus assay in CHO-k1 and HepG2 cells. Mutat Res 724:7–21

    CAS  PubMed  Google Scholar 

  65. Gibson DP, Brauninger R, Shaffi HS, Kerckaert GA, LeBoeuf RA et al (1997) Induction of micronuclei in Syrian hamster embryo cells: comparison to results in the SHE cell transformation assay for National Toxicology Program test chemicals. Mutat Res 392:61–70

    CAS  PubMed  Google Scholar 

  66. Elhajouji A, Lukamowicz-Rajska M (2013) Flow cytometric determination of micronucleus frequency. Methods Mol Biol 1044:209–235

    PubMed  Google Scholar 

  67. Fenech M, Kirsch-Volders M, Rossnerova A, Sram R, Romm H et al (2013) HUMN project initiative and review of validation, quality control and prospects for further development of automated micronucleus assays using image cytometry systems. Int J Hyg Environ Health 216:541–552

    CAS  PubMed  Google Scholar 

  68. Curren RD, Mun GC, Gibson DP, Aardema MJ (2006) Development of a method for assessing micronucleus induction in a 3D human skin model (EpiDerm). Mutat Res 607:192–204

    CAS  PubMed  Google Scholar 

  69. Mun GC, Aardema MJ, Hu T, Barnett B, Kaluzhny Y et al (2009) Further development of the EpiDerm 3D reconstructed human skin micronucleus (RSMN) assay. Mutat Res 673:92–99

    CAS  PubMed  Google Scholar 

  70. Hu T, Kaluzhny Y, Mun GC, Barnett B, Karetsky V et al (2009) Intralaboratory and interlaboratory evaluation of the EpiDerm 3D human reconstructed skin micronucleus (RSMN) assay. Mutat Res 673:100–108

    CAS  PubMed  Google Scholar 

  71. Aardema MJ, Barnett BC, Khambatta Z, Reisinger K, Ouedraogo-Arras G et al (2010) International prevalidation studies of the EpiDerm 3D human reconstructed skin micronucleus (RSMN) assay: transferability and reproducibility. Mutat Res 701:123–131

    CAS  PubMed  Google Scholar 

  72. Kirsch-Volders M, Decordier I, Elhajouji A, Plas G, Aardema MJ et al (2011) In vitro genotoxicity testing using the micronucleus assay in cell lines, human lymphocytes and 3D human skin models. Mutagenesis 26:177–184

    CAS  PubMed  Google Scholar 

  73. Gotz C, Pfeiffer R, Tigges J, Blatz V, Jackh C et al (2012) Xenobiotic metabolism capacities of human skin in comparison with a 3D epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: activating enzymes (Phase I). Exp Dermatol 21:358–363

    PubMed  Google Scholar 

  74. Brinkmann J, Stolpmann K, Trappe S, Otter T, Genkinger D et al (2013) Metabolically competent human skin models: activation and genotoxicity of benzo[a]pyrene. Toxicol Sci 131:351–359

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Flamand N, Marrot L, Belaidi JP, Bourouf L, Dourille E et al (2006) Development of genotoxicity test procedures with Episkin, a reconstructed human skin model: towards new tools for in vitro risk assessment of dermally applied compounds? Mutat Res 606: 39–51

    CAS  PubMed  Google Scholar 

  76. Pfuhler S, Fellows M, van Benthem J, Corvi R, Curren R et al (2011) In vitro genotoxicity test approaches with better predictivity: summary of an IWGT workshop. Mutat Res 723:101–107

    CAS  PubMed  Google Scholar 

  77. Reus AA, Reisinger K, Downs TR, Carr G, Zeller A, Corvi R, Krul CAM & Pfuhler S (2013) Comet assay in reconstructed 3D human epidermal skin models—investigation of intra- and inter-laboratory reproducibility with coded chemicals. Mutagenesis 28:709–720

    Google Scholar 

  78. Greywe D, Kreutz J, Banduhn N, Krauledat M, Scheel J et al (2012) Applicability and robustness of the hen’s egg test for analysis of micronucleus induction (HET-MN): results from an inter-laboratory trial. Mutat Res 747:118–134

    CAS  PubMed  Google Scholar 

  79. Wolf T, Niehaus-Rolf C, Banduhn N, Eschrich D, Scheel J et al (2008) The hen’s egg test for micronucleus induction (HET-MN): novel analyses with a series of well-characterized substances support the further evaluation of the test system. Mutat Res 650:150–164

    CAS  PubMed  Google Scholar 

  80. Wolf T, Niehaus-Rolf C, Luepke NP (2003) Investigating genotoxic and hematotoxic effects of N-nitrosodimethylamine, N-nitrosodiethylamine and N-nitrosodiethanolamine in the hen’s egg-micronucleus test (HET-MN). Food Chem Toxicol 41:561–573

    CAS  PubMed  Google Scholar 

  81. Basilio da Conceição M, Lovizutto Protti B (2012) Genotoxicity of selected pesticides in the hen’s egg test for micronucleus induction. J Braz Soc Ecotoxicol 7:43–47

    Google Scholar 

  82. Walmsley RM (2008) GADD45a-GFP GreenScreen HC genotoxicity screening assay. Expert Opin Drug Metab Toxicol 4: 827–835

    CAS  PubMed  Google Scholar 

  83. Cheng D, Zhao L, Zhang L, Jiang Y, Tian Y et al (2013) p53 controls hepatitis C virus non-structural protein 5A-mediated downregulation of GADD45alpha expression via the NF-kappaB and PI3K-Akt pathways. J Gen Virol 94:326–335

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Hastwell PW, Chai LL, Roberts KJ, Webster TW, Harvey JS et al (2006) High-specificity and high-sensitivity genotoxicity assessment in a human cell line: validation of the GreenScreen HC GADD45a-GFP genotoxicity assay. Mutat Res 607:160–175

    CAS  PubMed  Google Scholar 

  85. Hastwell PW, Webster TW, Tate M, Billinton N, Lynch AM et al (2009) Analysis of 75 marketed pharmaceuticals using the GADD45a-GFP ‘GreenScreen HC’ genotoxicity assay. Mutagenesis 24:455–463

    CAS  PubMed  Google Scholar 

  86. Birrell L, Cahill P, Hughes C, Tate M, Walmsley RM (2010) GADD45a-GFP GreenScreen HC assay results for the ECVAM recommended lists of genotoxic and non-genotoxic chemicals for assessment of new genotoxicity tests. Mutat Res 695:87–95

    CAS  PubMed  Google Scholar 

  87. Povlsen LK, Beli P, Wagner SA, Poulsen SL, Sylvestersen KB et al (2012) Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass. Nat Cell Biol 14:1089–1098

    CAS  PubMed  Google Scholar 

  88. Notas G, Alexaki VI, Kampa M, Pelekanou V, Charalampopoulos I et al (2012) APRIL binding to BCMA activates a JNK2-FOXO3-GADD45 pathway and induces a G2/M cell growth arrest in liver cells. J Immunol 189:4748–4758

    CAS  PubMed  Google Scholar 

  89. Billinton N, Hastwell PW, Beerens D, Birrell L, Ellis P et al (2008) Interlaboratory assessment of the GreenScreen HC GADD45a-GFP genotoxicity screening assay: an enabling study for independent validation as an alternative method. Mutat Res 653:23–33

    CAS  PubMed  Google Scholar 

  90. Billinton N, Bruce S, Hansen JR, Hastwell PW, Jagger C et al (2010) A pre-validation transferability study of the GreenScreen HC GADD45a-GFP assay with a metabolic activation system (S9). Mutat Res 700:44–50

    CAS  PubMed  Google Scholar 

  91. Westerink WM, Stevenson JC, Horbach GJ, Schoonen WG (2010) The development of RAD51C, Cystatin A, p53 and Nrf2 luciferase-reporter assays in metabolically competent HepG2 cells for the assessment of mechanism-based genotoxicity and of oxidative stress in the early research phase of drug development. Mutat Res 696:21–40

    CAS  PubMed  Google Scholar 

  92. Shelton P, Jaiswal AK (2013) The transcription factor NF-E2-related factor 2 (Nrf2): a protooncogene? FASEB J 27:414–423

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Yamamoto KN, Hirota K, Kono K, Takeda S, Sakamuru S et al (2011) Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines. Environ Mol Mutagen 52:547–561

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Tsamou M, Jennen DG, Claessen SM, Magkoufopoulou C, Kleinjans JC et al (2012) Performance of in vitro gammaH2AX assay in HepG2 cells to predict in vivo genotoxicity. Mutagenesis 27:645–652

    CAS  PubMed  Google Scholar 

  95. Klaunig JE, Kamendulis LM, Hocevar BA (2010) Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol 38:96–109

    CAS  PubMed  Google Scholar 

  96. Moriya M (1993) Single-stranded shuttle phagemid for mutagenesis studies in mammalian cells: 8-oxoguanine in DNA induces targeted G.C→T.A transversions in simian kidney cells. Proc Natl Acad Sci U S A 90:1122–1126

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Klaunig JE, Shi Y (2009) Assessment of gap junctional intercellular communication. Curr Protoc Toxicol Current protocols in toxicology/editorial board, Mahin D Maines Chapter 2: Unit2 17

    Google Scholar 

  98. Trosko JE, Chang CC, Madhukar BV (1994) The role of modulated gap junctional intercellular communication in epigenetic toxicology. Risk Anal 14:303–312

    CAS  PubMed  Google Scholar 

  99. Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30: 620–650

    CAS  PubMed  Google Scholar 

  100. Circu ML, Aw TY (2012) Glutathione and modulation of cell apoptosis. Biochim Biophys Acta 1823:1767–1777

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Kortenkamp A, Olwenn M, Faust M, Evans R, McKinlay R, et al. (2011) State of the Art Assessment of Endocrine Disrupters, Final Report, European Commission, DG Environment http://ec.europa.eu/environment/endocrine/documents/4_SOTA%20EDC%20Final%20Report%20V3%206%20Feb%2012.pdf. 070307/2009/550687/SER/D3

  102. Hynes J, Marroquin LD, Ogurtsov VI, Christiansen KN, Stevens GJ et al (2006) Investigation of drug-induced mitochondrial toxicity using fluorescence-based oxygen-sensitive probes. Toxicol Sci 92:186–200

    CAS  PubMed  Google Scholar 

  103. Hynes J, O’Riordan TC, Zhdanov AV, Uray G, Will Y et al (2009) In vitro analysis of cell metabolism using a long-decay pH-sensitive lanthanide probe and extracellular acidification assay. Anal Biochem 390:21–28

    CAS  PubMed  Google Scholar 

  104. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38

    CAS  PubMed  Google Scholar 

  105. Wen B, Fitch WL (2009) Screening and characterization of reactive metabolites using glutathione ethyl ester in combination with Q-trap mass spectrometry. J Mass Spectrom 44:90–100

    CAS  PubMed  Google Scholar 

  106. Barabasz A, Foley B, Otto JC, Scott A, Rice J (2006) The use of high-content screening for the discovery and characterization of compounds that modulate mitotic index and cell cycle progression by differing mechanisms of action. Assay Drug Dev Technol 4:153–163

    CAS  PubMed  Google Scholar 

  107. Harrigan GG, Yates LA (2006) High-throughput screening, metabolomics and drug discovery. IDrugs 9:188–192

    CAS  PubMed  Google Scholar 

  108. DiPaolo JA, Nelson RL, Donovan PJ (1969) Sarcoma-producing cell lines derived from clones transformed in vitro by benzo[a]pyrene. Science 165:917–918

    CAS  PubMed  Google Scholar 

  109. Isfort RJ, LeBoeuf RA (1996) Application of in vitro cell transformation assays to predict the carcinogenic potential of chemicals. Mutat Res 365:161–173

    PubMed  Google Scholar 

  110. Isfort RJ, Kerckaert GA, LeBoeuf RA (1996) Comparison of the standard and reduced pH Syrian hamster embryo (SHE) cell in vitro transformation assays in predicting the carcinogenic potential of chemicals. Mutat Res 356:11–63

    PubMed  Google Scholar 

  111. Matthews EJ, Spalding JW, Tennant RW (1993) Transformation of BALB/c-3T3 cells: V. Transformation responses of 168 chemicals compared with mutagenicity in Salmonella and carcinogenicity in rodent bioassays. Environ Health Perspect 101(Suppl 2):347–482

    CAS  PubMed Central  PubMed  Google Scholar 

  112. LeBoeuf RA, Kerckaert KA, Aardema MJ, Isfort RJ (1999) Use of Syrian hamster embryo and BALB/c 3T3 cell transformation for assessing the carcinogenic potential of chemicals. IARC Sci Publ 146:409–425

    Google Scholar 

  113. Vanparys P, Corvi R, Aardema MJ, Gribaldo L, Hayashi M et al (2012) Application of in vitro cell transformation assays in regulatory toxicology for pharmaceuticals, chemicals, food products and cosmetics. Mutat Res 744: 111–116

    CAS  PubMed  Google Scholar 

  114. Corvi R, Aardema MJ, Gribaldo L, Hayashi M, Hoffmann S et al (2012) ECVAM prevalidation study on in vitro cell transformation assays: general outline and conclusions of the study. Mutat Res 744:12–19

    CAS  PubMed  Google Scholar 

  115. OECD DPR No. 31 (2007) Number 31, Detailed Review Paper on cell transformation assays for detection of chemical carcinogens. ENV/JM/MONO(2007)18

    Google Scholar 

  116. ECVAM Recommendation (2012) Recommendation concerning the cell transformation assays using Syrian hamster embryo cells (SHE) and the BALB/c 3T3 mouse fibroblast cell line for in vitro carcinogenicity testing

    Google Scholar 

  117. Draft OECD TG (2012) DRAFT TG Publication: In Vitro Carcinogenicity: Syrian Hamster Embryo (SHE) Cell Transformation Assay, October 2012

    Google Scholar 

  118. Sakai A, Sasaki K, Hayashi K, Muramatsu D, Arai S et al (2011) An international validation study of a Bhas 42 cell transformation assay for the prediction of chemical carcinogenicity. Mutat Res 725:57–77

    CAS  PubMed  Google Scholar 

  119. Ohmori K, Umeda M, Tanaka N, Takagi H, Yoshimura I et al (2005) An inter-laboratory collaborative study by the Non-Genotoxic Carcinogen Study Group in Japan, on a cell transformation assay for tumour promoters using Bhas 42 cells. Altern Lab Anim 33: 619–639

    CAS  PubMed  Google Scholar 

  120. Sasaki K, Mizusawa H, Ishidate M (1988) Isolation and characterization of ras-transfected BALB/3T3 clone showing morphological transformation by 12-O-tetradecanoyl-phorbol-13-acetate. Jpn J Cancer Res 79: 921–930

    PubMed  Google Scholar 

  121. Sasaki K, Mizusawa H, Ishidate M, Tanaka N (1990) Establishment of a highly reproducible transformation assay of a ras-transfected BALB 3T3 clone by treatment with promoters. Basic Life Sci 52:411–416

    CAS  PubMed  Google Scholar 

  122. Asada S, Sasaki K, Tanaka N, Takeda K, Hayashi M et al (2005) Detection of initiating as well as promoting activity of chemicals by a novel cell transformation assay using v-Ha-ras-transfected BALB/c 3T3 cells (Bhas 42 cells). Mutat Res 588:7–21

    CAS  PubMed  Google Scholar 

  123. Draft ECVAM Recommendation (2013) on the Cell Transformation Assay based on the Bhas 42 cell line. http://ihcp.jrc.ec.europa.eu/our_labs/eurl-ecvam/eurl-ecvam-recommendations/files-bhas/EURL_ECVAM_Recommendation_Bhas-CTA_2013.pdf

  124. Walsh MJ, Bruce SW, Pant K, Carmichael PL, Scott AD et al (2009) Discrimination of a transformation phenotype in Syrian golden hamster embryo (SHE) cells using ATR-FTIR spectroscopy. Toxicology 258:33–38

    CAS  PubMed  Google Scholar 

  125. Urani C, Corvi R, Callegaro G, Stefanini FM (2013) Objective scoring of transformed foci in BALB/c 3T3 cell transformation assay by statistical image descriptors. Toxicol In Vitro 27:1905–1912

    CAS  PubMed  Google Scholar 

  126. Urani C, Stefanini FM, Bussinelli L, Melchioretto P, Crosta GF (2009) Image analysis and automatic classification of transformed foci. J Microsc 234:269–279

    CAS  PubMed  Google Scholar 

  127. Poth A, Kunz S, Heppenheimer A (2007) Bhas cell transformation assay as a predictor of carcinogenicity. ALTEX 14:519–521

    Google Scholar 

  128. Pant K, Sly JE, Bruce SW, Leung C, San RH (2008) Syrian hamster embryo (SHE) cell transformation assay with conditioned media (without X-ray irradiated feeder layer) using 2,4-diaminotoluene, 2,6-diaminotoluene and chloral hydrate. Mutat Res 654:108–113

    CAS  PubMed  Google Scholar 

  129. Ao L, Liu JY, Liu WB, Gao LH, Hu R et al (2010) Comparison of gene expression profiles in BALB/c 3T3 transformed foci exposed to tumor promoting agents. Toxicol In Vitro 24:430–438

    CAS  PubMed  Google Scholar 

  130. Rohrbeck A, Salinas G, Maaser K, Linge J, Salovaara S et al (2010) Toxicogenomics applied to in vitro carcinogenicity testing with Balb/c 3T3 cells revealed a gene signature predictive of chemical carcinogens. Toxicol Sci 118:31–41

    CAS  PubMed  Google Scholar 

  131. Thierbach R, Steinberg P (2009) Automated soft agar assay for the high-throughput screening of anticancer compounds. Anal Biochem 387:318–320

    CAS  PubMed  Google Scholar 

  132. Doktorova TY, Pauwels M, Vinken M, Vanhaecke T, Rogiers V (2012) Opportunities for an alternative integrating testing strategy for carcinogen hazard assessment? Crit Rev Toxicol 42:91–106

    CAS  PubMed  Google Scholar 

  133. Ellinger-Ziegelbauer H, Aubrecht J, Kleinjans JC, Ahr HJ (2009) Application of toxicogenomics to study mechanisms of genotoxicity and carcinogenicity. Toxicol Lett 186:36–44

    CAS  PubMed  Google Scholar 

  134. Waters MD, Jackson M, Lea I (2010) Characterizing and predicting carcinogenicity and mode of action using conventional and toxicogenomics methods. Mutat Res 705: 184–200

    CAS  PubMed  Google Scholar 

  135. Doktorova TY, Yildirimman R, Vinken M, Vilardell M, Vanhaecke T et al (2013) Transcriptomic responses generated by hepatocarcinogens in a battery of liver-based in vitro models. Carcinogenesis 34:1393–1402

    CAS  PubMed  Google Scholar 

  136. Jennings P, Limonciel A, Felice L, Leonard MO (2013) An overview of transcriptional regulation in response to toxicological insult. Arch Toxicol 87:49–72

    CAS  PubMed  Google Scholar 

  137. Tsujimura K, Asamoto M, Suzuki S, Hokaiwado N, Ogawa K et al (2006) Prediction of carcinogenic potential by a toxicogenomic approach using rat hepatoma cells. Cancer Sci 97:1002–1010

    CAS  PubMed  Google Scholar 

  138. Harris AJ, Shaddock JG, Delongchamp R, Dragan Y, Casciano DA (2004) Comparison of Basal gene expression in cultured primary rat hepatocytes and freshly isolated rat hepatocytes. Toxicol Mech Methods 14: 257–270

    CAS  PubMed  Google Scholar 

  139. Jennen DG, Magkoufopoulou C, Ketelslegers HB, van Herwijnen MH, Kleinjans JC et al (2010) Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci 115:66–79

    CAS  PubMed  Google Scholar 

  140. van Delft JH, van Agen E, van Breda SG, Herwijnen MH, Staal YC et al (2004) Discrimination of genotoxic from non-genotoxic carcinogens by gene expression profiling. Carcinogenesis 25:1265–1276

    PubMed  Google Scholar 

  141. Guyton KZ, Kyle AD, Aubrecht J, Cogliano VJ, Eastmond DA et al (2009) Improving prediction of chemical carcinogenicity by considering multiple mechanisms and applying toxicogenomic approaches. Mutat Res 681: 230–240

    CAS  PubMed  Google Scholar 

  142. Mathijs K, Brauers KJ, Jennen DG, Lizarraga D, Kleinjans JC et al (2010) Gene expression profiling in primary mouse hepatocytes discriminates true from false-positive genotoxic compounds. Mutagenesis 25:561–568

    CAS  PubMed  Google Scholar 

  143. Hernandez LG, van Benthem J, Johnson GE (2013) A mode-of-action approach for the identification of genotoxic carcinogens. PLoS One 8:e64532

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Hernandez LG, Slob W, van Steeg H, van Benthem J (2011) Can carcinogenic potency be predicted from in vivo genotoxicity data?: a meta-analysis of historical data. Environ Mol Mutagen 52:518–528

    CAS  PubMed  Google Scholar 

  145. Benfenati E, Benigni R, Demarini DM, Helma C, Kirkland D et al (2009) Predictive models for carcinogenicity and mutagenicity: frameworks, state-of-the-art, and perspectives. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27:57–90

    CAS  PubMed  Google Scholar 

  146. Herceg Z, Lambert MP, van Veldhoven K, Demetriou C, Vineis P et al (2013) Towards incorporating epigenetic mechanisms into carcinogen identification and evaluation. Carcinogenesis 34(9):1955–1967

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaella Corvi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Madia, F., Phrakonkham, P., Corvi, R. (2014). Current and Emerging In Vitro Methods for Genotoxicity and Carcinogenicity. In: Bal-Price, A., Jennings, P. (eds) In Vitro Toxicology Systems. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0521-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0521-8_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0520-1

  • Online ISBN: 978-1-4939-0521-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics