Skip to main content

Immunotoxicity

  • Protocol
  • First Online:
  • 1734 Accesses

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Immunotoxicology has been discussed but little addressed in practice of toxicity testing over the last two decades. Current guidance relies on animal tests, which include some immune endpoints in repeated dose tests and call for dedicated tests only when certain alerts indicate a problem, which cannot be evaluated on the evidence obtained so far. At the same time, a wealth of in vitro approaches has been developed in basic and clinical immunology as well as pharmacological agent discovery, but little has been adopted for routine testing. The extent to which immunotoxicity of chemicals represents a health problem for the human population is not clear. It appears that responses of healthy individuals to immunological challenges differ widely and most immunomodulators have little adverse effects, except when coinciding with an infectious or malignant challenge, where the odds of progressing into infection and autoimmune diseases as well as cancer can be changed. The enormous overcapacity of immune defense and their fast restoration contribute to limiting health threats for the individual, though on a population level also minor immunomodulations might result in increased morbidities. In vitro alternative approaches might offer an opportunity to screen for problematic substances and prioritizing them for testing. New approaches emerge from mapping of pathways of immunotoxicity. Increasingly, the contribution of inflammatory and infectious components to the adverse outcome pathways of chemicals for various hazards is recognized, urging to include tests for proinflammatory and immunomodulatory properties into integrated testing strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Galbiati V, Mitjans M, Corsini E (2010) Present and future of in vitro immunotoxicology in drug development. J Immunotoxicol 7:255–267

    CAS  PubMed  Google Scholar 

  2. Corsini E (2006) Human immunotoxicology: consequences and mechanisms. Toxicol Lett 164:S313

    Google Scholar 

  3. Corsini EE, Roggen ELE (2009) Immunotoxicology: opportunities for non-animal test development. Altern Lab Anim 37:387–397

    CAS  PubMed  Google Scholar 

  4. Lankveld D, Van Loveren H, Baken K (2010) In vitro testing for direct immunotoxicity: state of the art. Methods Mol Biol 598:401–423

    CAS  PubMed  Google Scholar 

  5. Pfaller TT, Colognato RR, Nelissen II, Favilli FF, Casals EE, Ooms DD et al (2010) The suitability of different cellular in vitro immunotoxicity and genotoxicity methods for the analysis of nanoparticle-induced events. Nanotoxicology 4:52–72

    CAS  PubMed  Google Scholar 

  6. Gennari A, Ban M, Braun A, Casati S, Corsini E, Dastych J et al (2005) The use of in vitro systems for evaluating immunotoxicity: the report and recommendations of an ECVAM Workshop. J Immunotoxicol 2:61–83

    PubMed  Google Scholar 

  7. Carfi M, Gennari A, Malerba I, Corsini E, Pallardy M, Pieters R et al (2007) In vitro tests to evaluate immunotoxicity: a preliminary study. Toxicology 229:11–22

    CAS  PubMed  Google Scholar 

  8. Descotes J (2004) Health consequences of immunotoxic effects. In: Descotes J (ed) Immunotoxicology of drugs and chemicals: an experimental and clinical approach. Principles and methods of immunotoxicology. Elsevier, Amsterdam, pp 55–126

    Google Scholar 

  9. Kadow S, Jux B, Chmill S, Esser C (2009) Small molecules as friends and foes of the immune system. Future Med Chem 1:1583–1591

    CAS  PubMed  Google Scholar 

  10. House RVR (2010) Fundamentals of clinical immunotoxicology. Methods Mol Biol 598: 363–384

    CAS  PubMed  Google Scholar 

  11. Rooney AAA, Luebke RWR, Selgrade MKM, Germolec DRD (2012) Immunotoxicology and its application in risk assessment. Conserv Genet 101:251–287

    Google Scholar 

  12. Descotes J (2006) Methods of evaluating immunotoxicity. Expert Opin Drug Metab Toxicol 2:249–259

    CAS  PubMed  Google Scholar 

  13. Dietert RR (ed) (2010) Immunotoxicity testing. Humana Press, Totowa, NJ

    Google Scholar 

  14. Dean JH, Luster MI, Munson AE, Kimber I (1994) Immunotoxicology and immunopharmacology. CRC Press, Boca Raton, FL

    Google Scholar 

  15. House RV, Luebke R, Kimber I (2006) Immunotoxicology and immunopharmacology. CRC Press, Boca Raton, FL

    Google Scholar 

  16. Holsapple MPM (2002) Autoimmunity by pesticides: a critical review of the state of the science. Toxicol Lett 127:101–109

    CAS  PubMed  Google Scholar 

  17. EDF (1997) Toxic ignorance. EDF, New York, pp 1–65

    Google Scholar 

  18. Sodemann U, Bistrup C, Marckmann P (2011) Cancer rates after kidney transplantation. Dan Med Bull 58:4342

    Google Scholar 

  19. Basketter DA, Clewell H, Kimber I, Rossi A, Blaauboer B, Burrier R et al (2012) A roadmap for the development of alternative (non-animal) methods for systemic toxicity testing—t4 report. ALTEX 29:3–91

    PubMed  Google Scholar 

  20. Casati S, Aeby P, Basketter DA, Cavani A, Gennari A, Gerberick GF et al (2005) Dendritic cells as a tool for the predictive identification of skin sensitisation hazard. Altern Lab Anim 33:47–62

    CAS  PubMed  Google Scholar 

  21. Dean JH, House RV, Luster MI (2007) Immunotoxicology: effects of and response to drugs and chemicals. In: Hayes AW (ed) Principles and methods of toxicology, 5th edn. Taylor & Francis, Philadelphia, pp 1755–1796

    Google Scholar 

  22. Kilburn KH, Warshaw RH (1994) Chemical-induced autoimmunity. In: Dean JH, Luster MI, Munson AE, Kimber I (eds) Immunotoxicology and immunopharmacology, 2nd edn. Raven Press, New York, pp 523–538

    Google Scholar 

  23. Kosuda LL, Bigazzi EP (1996) Chemical-induced autoimmunity. In: Smialowicz RR, Holsapple MP (eds) Experimental immunotoxicology. CRC Press, Boca Raton, FL, pp 419–468

    Google Scholar 

  24. Pieters R (2007) Detection of autoimmunity by pharmaceuticals. Methods 41:112–117

    CAS  PubMed  Google Scholar 

  25. Lam-Tse WKW, Lernmark AA, Drexhage HAH (2002) Animal models of endocrine/organ-specific autoimmune diseases: do they really help us to understand human autoimmunity? Springer Semin Immunopathol 24: 297–321

    CAS  PubMed  Google Scholar 

  26. Luster MI, Gerberick GF (2010) Immunotoxicology testing: past and future. Methods Mol Biol 598:3–13

    CAS  PubMed  Google Scholar 

  27. Germolec D, Kono DH, Pfau JC, Pollard KM (2012) Animal models used to examine the role of the environment in the development of autoimmune disease: findings from an NIEHS Expert Panel Workshop. J Autoimmun 39:285–293

    PubMed Central  PubMed  Google Scholar 

  28. van der Star BJ, Vogel DYS, Kipp M, Puentes F, Baker D, Amor S (2012) In vitro and in vivo models of multiple sclerosis. CNS Neurol Disord Drug Targets 11:570–588

    PubMed  Google Scholar 

  29. Goebels N (2007) Organotypic CNS slice cultures as an in vitro model for immune mediated tissue damage and repair in multiple sclerosis. ALTEX 24 Spec No: 85–86

    Google Scholar 

  30. Reuben S (2010) Reducing environmental cancer risk: what we can do now: 2008–2009 annual report. President’s Cancer Panel, Bethesda

    Google Scholar 

  31. Kirkwood TBL (2008) A systematic look at an old problem. Nature 451:644–647

    CAS  PubMed  Google Scholar 

  32. Kaminski NE, Faubert Kaplan BE, Holsapple MP (2007) Toxic responses of the immune system. In: Klaassen CD (ed) Casarett and Doull’s toxicology, 7th edn. McGraw Hill Professional, New York, pp 485–555

    Google Scholar 

  33. Weir GM, Liwski RS, Mansour M (2011) Immune modulation by chemotherapy or immunotherapy to enhance cancer vaccines. Cancers 3:3114–3142

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G (2008) Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8:59–73

    CAS  PubMed  Google Scholar 

  35. Ponti J, Munaro B, Fischbach M, Hoffmann S, Sabbioni E (2007) An optimised data analysis for the Balb/c 3T3 cell transformation assay and its application to metal compounds. Int J Immunopathol and Pharmacol 20(Suppl 2):673–684

    Google Scholar 

  36. Corsini E, Sokooti M, Galli CL, Moretto A, Colosio C (2013) Pesticide induced immunotoxicity in humans: a comprehensive review of the existing evidence. Toxicology 307:123–135

    CAS  PubMed  Google Scholar 

  37. Hartung T (1998) Immunomodulation by colony-stimulating factors. Rev Physiol Biochem Pharmacol 136:1–164

    Google Scholar 

  38. Hareng L, Hartung T (2002) Induction and regulation of endogenous granulocyte colony-stimulating factor formation. Biol Chem 383:1501–1517

    CAS  PubMed  Google Scholar 

  39. Garbe E (2007) Non-chemotherapy drug-induced agranulocytosis. Expert Opin Drug Saf 6:323–335

    CAS  PubMed  Google Scholar 

  40. Díaz HG, Marrero Y, Hernández I, Bastida I, Tenorio E, Nasco O et al (2003) 3D-MEDNEs: an alternative “in silico” technique for chemical research in toxicology. 1. Prediction of chemically induced agranulocytosis. Chem Res Toxicol 16:1318–1327

    PubMed  Google Scholar 

  41. Knutsen BB (1978) Chemically induced agranulocytosis. 2 cases of bone marrow disorder after exposure to paint, sealing-wax and glue. Tidsskr Nor Laegeforen 98:888–890

    PubMed  Google Scholar 

  42. Institóris L, Siroki O, Dési I, Lesznyák J, Serényi P, Szekeres É et al (1998) Extension of the protocol of OECD guideline 407 (28-day repeated dose oral toxicity test in the rat) to detect potential immunotoxicity of chemicals. Hum Exp Toxicol 17:206–211

    PubMed  Google Scholar 

  43. Germolec DR (2004) Sensitivity and predictivity in immunotoxicity testing: immune endpoints and disease resistance. Toxicol Lett 149:109–114

    CAS  PubMed  Google Scholar 

  44. Sundwall AA, Andersson BB, Balls MM, Dean JJ, Descotes JJ, Hammarström SS et al (1994) Workshop: immunotoxicology and in vitro possibilities. Toxicol In Vitro 8:1067–1074

    CAS  PubMed  Google Scholar 

  45. Pessina A, Albella B, Bueren J, Brantom P, Casati S, Gribaldo L et al (2001) Prevalidation of a model for predicting acute neutropenia by colony forming unit granulocyte/macrophage (CFU-GM) assay. Toxicol In Vitro 15: 729–740

    CAS  PubMed  Google Scholar 

  46. Negro GD, Bonato M, Gribaldo L (2001) In vitro bone marrow granulocyte-macrophage progenitor cultures in the assessment of hematotoxic potential of the new drugs. Cell Biol Toxicol 17:95–105

    CAS  PubMed  Google Scholar 

  47. Mishell RIR, Dutton RWR (1967) Immunization of dissociated spleen cell cultures from normal mice. J Exp Med 126:423–442

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Dutton RWR, Mishell RIR (1967) Cell populations and cell proliferation in the in vitro response of normal mouse spleen to heterologous erythrocytes. Analysis by the hot pulse technique. J Exp Med 126:443–454

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Wood SC, Karras JG, Holsapple MP (1992) Integration of the human lymphocyte into immunotoxicological investigations. Fundam Appl Toxicol 18:450–459

    CAS  PubMed  Google Scholar 

  50. House RV, Thomas PT (1995) In vitro induction of cytotoxic T-lymphocytes. In: Burleson GR, Dean JH, Munson AE (eds) Methods in immunotoxicology. Wiley-Liss, New York, pp 159–171

    Google Scholar 

  51. Morales A, Ottenhof PC (1983) Clinical application of a whole blood assay for human natural killer (NK) cell activity. Cancer 52:667–670

    CAS  PubMed  Google Scholar 

  52. Roder JCJ, Haliotis TT, Klein MM, Korec SS, Jett JRJ, Ortaldo JJ et al (1980) A new immunodeficiency disorder in humans involving NK cells. Nature 284:553–555

    CAS  PubMed  Google Scholar 

  53. Kim GGG, Donnenberg VSV, Donnenberg ADA, Gooding WW, Whiteside TLT (2007) A novel multiparametric flow cytometry-based cytotoxicity assay simultaneously immunophenotypes effector cells: comparisons to a 4 h 51Cr-release assay. J Immunol Methods 325:16–66

    Google Scholar 

  54. Blom WMW, van Nielen WGLW, de Groene EME, Albers RR (2009) A cell-based screening assay for Natural Killer cell activity. Int Immunopharmacol 9:746–752

    CAS  PubMed  Google Scholar 

  55. Descotes J, Ravel G (2005) Role of natural killer cells in immunotoxicity: an update. Expert Rev Clin Immunol 1:603–608

    CAS  PubMed  Google Scholar 

  56. Langezaal I, Coecke S, Hartung T (2001) Whole blood cytokine response as a measure of immunotoxicity. Toxicol In Vitro 15:313–318

    CAS  PubMed  Google Scholar 

  57. Langezaal I, Hoffmann S, Hartung T, Coecke S (2002) Evaluation and prevalidation of an immunotoxicity test based on human whole-blood cytokine release. Altern Lab Anim 30: 581–595

    CAS  PubMed  Google Scholar 

  58. Coutant KDK, de Fraissinette ABA, Cordier AA, Ulrich PP (1999) Modulation of the activity of human monocyte-derived dendritic cells by chemical haptens, a metal allergen, and a staphylococcal superantigen. Toxicol Sci 52:189–198

    CAS  PubMed  Google Scholar 

  59. Hymery N, Sibiril Y, Parent-Massin D (2006) Improvement of human dendritic cell culture for immunotoxicological investigations. Cell Biol Toxicol 22:243–255

    CAS  PubMed  Google Scholar 

  60. Hartung T, Aaberge I, Berthold S, Carlin G, Charton E, Coecke S et al (2001) Novel pyrogen tests based on the human fever reaction. The report and recommendations of ECVAM Workshop 43. Altern Lab Anim 29:99–123

    CAS  PubMed  Google Scholar 

  61. Daneshian M, von Aulock S, Hartung T (2009) Assessment of pyrogenic contaminations with validated human whole-blood assay. Nat Protoc 4:1709–1721

    CAS  PubMed  Google Scholar 

  62. Schindler S, von Aulock S, Daneshian M, Hartung T (2009) Development, validation and applications of the monocyte activation test for pyrogens based on human whole blood. ALTEX 26:265–277

    PubMed  Google Scholar 

  63. Hoffmann S, Peterbauer A, Schindler S, Fennrich S, Poole S, Mistry Y et al (2005) International validation of novel pyrogen tests based on human monocytoid cells. J Immunol Methods 298:161–173

    CAS  PubMed  Google Scholar 

  64. Hermann C, von Aulock S, Graf K, Hartung T (2003) A model of human whole blood lymphokine release for in vitro and ex vivo use. J Immunol Methods 275:69–79

    CAS  PubMed  Google Scholar 

  65. Gennari A, van den Berghe C, Casati S, Castell J, Clemedson C, Coecke S et al (2004) Strategies to replace in vivo acute systemic toxicity testing. The report and recommendations of ECVAM Workshop 50. Altern Lab Anim 32:437–459

    CAS  PubMed  Google Scholar 

  66. Schindler S, Asmus S, von Aulock S, Wendel A, Hartung T, Fennrich S (2004) Cryopreservation of human whole blood for pyrogenicity testing. J Immunol Methods 294:89–100

    CAS  PubMed  Google Scholar 

  67. Schindler S, Spreitzer I, Loschner B, Hoffmann S, Hennes K, Halder M et al (2006) International validation of pyrogen tests based on cryopreserved human primary blood cells. J Immunol Methods 316:42–51

    CAS  PubMed  Google Scholar 

  68. Hartung T, Docke WD, Gantner F, Krieger G, Sauer A, Stevens P et al (1995) Effect of granulocyte colony-stimulating factor treatment on ex vivo blood cytokine response in human volunteers. Blood 85:2482–2489

    CAS  PubMed  Google Scholar 

  69. von Aulock S, Boneberg E-M, Diterich I, Hartung T (2004) Granulocyte colony-stimulating factor (filgrastim) treatment primes for increased ex vivo inducible prostanoid release. J Pharmacol Exp Ther 308: 754–759

    Google Scholar 

  70. Elsässer-Beile U, von Kleist S, Lindenthal A, Birken R, Gallati H, Mönting JS (1993) Cytokine production in whole blood cell cultures of patients undergoing therapy with biological response modifiers or 5-fluorouracil. Cancer Immunol Immunother 37: 169–174

    PubMed  Google Scholar 

  71. Fletcher MA, Baron GC, Ashman MR, Fischl MA, Klimas NG (1987) Use of whole blood methods in assessment of immune parameters in immunodeficiency states. Diagn Clin Immunol 5:69–81

    CAS  PubMed  Google Scholar 

  72. Bloemena E, Roos MTL, Van Heijst JLAM, Vossen JMJJ, Schellekens PTA (1989) Whole-blood lymphocyte cultures. J Immunol Methods 122:161–167

    CAS  PubMed  Google Scholar 

  73. Corsini E, Oukka M, Pieters R, Kerkvliet NI, Ponce R, Germolec DR (2011) Alterations in regulatory T-cells: rediscovered pathways in immunotoxicology. J Immunotoxicol 8: 251–257

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Burns-Naas LA, Hastings KL, Ladics GS, Makris SL, Parker GA, Holsapple MP (2008) What’s so special about the developing immune system? Int J Toxicol 27:223–254

    PubMed  Google Scholar 

  75. DeWitt JC, Peden-Adams MM, Keil DE, Dietert RR (2012) Current status of developmental immunotoxicity: early-life patterns and testing. Toxicol Pathol 40:230–236

    CAS  PubMed  Google Scholar 

  76. Collinge M, Burns-Naas LA, Chellman GJ, Kawabata TT, Komocsar WJ, Piccotti JR et al (2012) Developmental immunotoxicity (DIT) testing of pharmaceuticals: current practices, state of the science, knowledge gaps, and recommendations. J Immunotoxicol 9:210–230

    CAS  PubMed  Google Scholar 

  77. Dietert RR (2008) Developmental immunotoxicology (DIT): windows of vulnerability, immune dysfunction and safety assessment. J Immunotoxicol 5:401–412

    PubMed  Google Scholar 

  78. Holsapple MP, Burns-Naas LA, Hastings KL, Ladics GS, Lavin AL, Makris SL et al (2005) A proposed testing framework for developmental immunotoxicology (DIT). Toxicol Sci 83:18–24

    CAS  PubMed  Google Scholar 

  79. Hartung T, Rovida C (2009) Chemical regulators have overreached. Nature 460:1080–1081

    CAS  PubMed  Google Scholar 

  80. Rovida C, Hartung T (2009) Re-evaluation of animal numbers and costs for in vivo tests to accomplish REACH legislation requirements for chemicals—a report by the transatlantic think tank for toxicology (t4). ALTEX 26:187–208

    PubMed  Google Scholar 

  81. Bremer S, Pellizzer C, Hoffmann S, Seidle T, Hartung T (2007) The development of new concepts for assessing reproductive toxicity applicable to large scale toxicological programmes. Curr Pharm Des 13:3047–3058

    CAS  PubMed  Google Scholar 

  82. Rovida C, Longo F, Rabbit RR (2011) How are reproductive toxicity and developmental toxicity addressed in REACH dossiers? ALTEX 28:273–294

    PubMed  Google Scholar 

  83. DiPietro LA (1995) Wound healing: the role of the macrophage and other immune cells. Shock 4:233–240

    CAS  PubMed  Google Scholar 

  84. Schneider M, Hartung T (2001) Induction of the chemokines IL-8 and MCP-1 in human whole blood by a cell-lysate of human fibroblast cells. Immunol Lett 75:163–165

    CAS  PubMed  Google Scholar 

  85. Su GL (2002) Lipopolysaccharides in liver injury: molecular mechanisms of Kupffer cell activation. Am J Physiol Gastrointest Liver Physiol 283:G256–G265

    CAS  PubMed  Google Scholar 

  86. Nolan JP (2010) The role of intestinal endotoxin in liver injury: a long and evolving history. Hepatology 52:1829–1835

    CAS  PubMed  Google Scholar 

  87. Laskin DL, Pendino KJ (1995) Macrophages and inflammatory mediators in tissue injury. Annu Rev Pharmacol Toxicol 35:655–677

    CAS  PubMed  Google Scholar 

  88. Leist M, Gantner F, Künstle G, Wendel A (1998) Cytokine-mediated hepatic apoptosis. Rev Physiol Biochem Pharmacol 133:109–155

    CAS  PubMed  Google Scholar 

  89. Luster MI, Simeonova PP, Gallucci RM, Bruccoleri A, Blazka ME, Yucesoy B (2001) Role of inflammation in chemical-induced hepatotoxicity. Toxicol Lett 120:317–321

    CAS  PubMed  Google Scholar 

  90. Czaja MJ, Xu J, Ju Y, Alt E, Schmiedeberg P (1994) Lipopolysaccharide-neutralizing antibody reduces hepatocyte injury from acute hepatotoxin administration. Hepatology 19:1282–1289

    CAS  PubMed  Google Scholar 

  91. Leist M, Gantner F, Naumann H, Bluethmann H, Vogt K, Brigelius-Flohé R et al (1997) Tumor necrosis factor-induced apoptosis during the poisoning of mice with hepatotoxins. Gastroenterology 112:923–934

    CAS  PubMed  Google Scholar 

  92. Ganey PE, Roth RA (2001) Concurrent inflammation as a determinant of susceptibility to toxicity from xenobiotic agents. Toxicology 169:195–208

    CAS  PubMed  Google Scholar 

  93. Hartung T (2008) Food for thought—on animal tests. ALTEX 25:3–16

    PubMed  Google Scholar 

  94. Gatt M, Reddy BS, MacFie J (2007) Review article: bacterial translocation in the critically ill—evidence and methods of prevention. Aliment Pharmacol Ther 25:741–757

    CAS  PubMed  Google Scholar 

  95. Philip M, Rowley DA, Schreiber H (2004) Inflammation as a tumor promoter in cancer induction. Semin Cancer Biol 14(6):433–439

    CAS  PubMed  Google Scholar 

  96. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    CAS  PubMed  Google Scholar 

  97. Hartung T, Wendel A (1995) Detection of pyrogens using human whole blood. ALTEX 12:70–75

    PubMed  Google Scholar 

  98. Wakelin SJ, Sabroe I, Gregory CD, Poxton IR, Forsythe JLR, Garden OJ et al (2006) “Dirty little secrets”—endotoxin contamination of recombinant proteins. Immunol Lett 106:1–7

    CAS  PubMed  Google Scholar 

  99. Jones CF, Grainger DW (2009) In vitro assessments of nanomaterial toxicity. Adv Drug Deliv Rev 61:438–456

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Ilbäck N-G, Friman G (2007) Interactions among infections, nutrients and xenobiotics. Crit Rev Food Sci Nutr 47:499–519

    PubMed  Google Scholar 

  101. Feingold BJ, Vegosen L, Davis M, Leibler J, Peterson A, Silbergeld EK (2010) A niche for infectious disease in environmental health: rethinking the toxicological paradigm. Environ Health Perspect 118:1165–1172

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Hartung T (2010) From alternative methods to a new toxicology. Eur J Pharm Biopharm 77:338–349

    PubMed  Google Scholar 

  103. Hartung T (2010) Lessons learned from alternative methods and their validation for a new toxicology in the 21st century. J Toxicol Environ Health B Crit Rev 13:277–290

    CAS  PubMed  Google Scholar 

  104. Hartung T (2009) Toxicology for the twenty-first century. Nature 460:208–212

    CAS  PubMed  Google Scholar 

  105. Hartung T (2009) A toxicology for the 21st century—mapping the road ahead. Toxicol Sci 109:18–23

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Ferrario D, Rabbit RR (2012) Analysis of the proposed EU regulation concerning biocide products and its opportunities for alternative approaches and a toxicology for the 21st century (t4 report). ALTEX 29: 157–172

    PubMed  Google Scholar 

  107. Luebke R (2012) Immunotoxicant screening and prioritization in the twenty-first century. Toxicol Pathol 40:294–299

    CAS  PubMed  Google Scholar 

  108. Hartung T, McBride M (2011) Food for Thought—on mapping the human toxome. ALTEX 28:83–93

    PubMed  Google Scholar 

  109. Hartung T, Luechtefeld T, Maertens A, Kleensang A (2013) Integrated testing strategies for safety assessments. ALTEX 30:3–18

    PubMed Central  PubMed  Google Scholar 

  110. Hartung T, Zurlo J (2012) Food for thought—alternative approaches for medical countermeasures to biological and chemical terrorism and warfare. ALTEX 29:251–260

    PubMed  Google Scholar 

  111. Hartung T, van Vliet E, Jaworska J, Bonilla L, Skinner N, Thomas R (2012) Food for thought—systems toxicology. ALTEX 29:119–128

    PubMed  Google Scholar 

  112. Hartung T, Corsini E (2013) Immunotoxicology: challenges in the 21st century and in vitro opportunities. ALTEX 30(4):411–426

    Google Scholar 

Download references

Acknowledgements

This article is based on a publication “Immunotoxicology: Challenges in the 21st century and in vitro opportunities” in the Food for Thought series in ALTEX 4’2013 [112]. The discussions and work with the ECVAM taskforce on immunotoxicology and the participants of the respective ECVAM workshop are gratefully appreciated. The author holds patents on the whole blood pyrogen test and cryopreserved blood mentioned above and is supported also by NIH (3R01ES018845-04S1). The work on pathway of toxicity mapping referred to is financed by NIH (1R01ES020750).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hartung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hartung, T. (2014). Immunotoxicity. In: Bal-Price, A., Jennings, P. (eds) In Vitro Toxicology Systems. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0521-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0521-8_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0520-1

  • Online ISBN: 978-1-4939-0521-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics