Skip to main content

Strategy for Genome Sequencing Analysis and Assembly for Comparative Genomics of Pseudomonas Genomes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1149))

Abstract

Bacterial genome sequencing has developed rapidly in the last decade and has become a primary method for analyzing the genomic basis of differences in phenotype between strains as well as being a valuable tool for public health epidemiology. This chapter provides a comprehensive workflow for bacterial genome sequencing from experimental design to data suitable for comparative genomics analysis, while mainly focusing on the challenges associated with genome assembly. This approach was successfully applied to 19 Pseudomonas aeruginosa genomes from phenotypically distinct strains.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fleischmann R et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512

    Article  CAS  Google Scholar 

  2. Loman NJ et al (2012) High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat Rev Microbiol 10:599–606

    Article  CAS  Google Scholar 

  3. Didelot X et al (2012) Transforming clinical microbiology with bacterial genome sequencing. Nat Rev Genet 13:601–612

    Article  CAS  Google Scholar 

  4. Klockgether J et al (2011) Pseudomonas aeruginosa genomic structure and diversity. Front Microbiol 2:150

    Article  CAS  Google Scholar 

  5. Winsor GL et al (2011) Pseudomonas genome database: improved comparative analysis and population genomics capability for Pseudomonas genomes. Nucleic Acids Res 39:D596–D600

    Article  CAS  Google Scholar 

  6. Simpson JT et al (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19:1117–1123

    Article  CAS  Google Scholar 

  7. Chevreux B, Wetter T, Suhai S (1999) Genome sequence assembly using trace signals and additional sequence information. Comput Sci Biol 99:45–56

    Google Scholar 

  8. Darling ACE et al (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403

    Article  CAS  Google Scholar 

  9. Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202

    Article  CAS  Google Scholar 

  10. Venkata V, Prasad S, Loshma G (2011) HPC-MAQ: a parallel short-read reference assembler. Comput Sci Inform Tech 2:75–84

    Google Scholar 

  11. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  Google Scholar 

  12. Langmead B et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  Google Scholar 

  13. Goecks J et al (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11:R86

    Article  Google Scholar 

  14. Darling AE, Mau B, Perna NT (2010) Progressive Mauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147

    Article  Google Scholar 

  15. Rissman AI et al (2009) Reordering contigs of draft genomes using the Mauve aligner. Bioinformatics 25:2071–2073

    Article  CAS  Google Scholar 

  16. Altschul SF et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  17. Swain M et al (2012) A post-assembly genome-improvement toolkit (PAGIT) to obtain annotated genomes from contigs. Nat Protoc 7:1260–1284

    Article  CAS  Google Scholar 

  18. Hurt RA Jr et al (2012) Sequencing intractable DNA to close microbial genomes. PLoS One 7:e41295

    Article  CAS  Google Scholar 

  19. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  20. Rutherford K et al (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944–945

    Article  CAS  Google Scholar 

  21. Chaudhuri RR et al (2008) xBASE2: a comprehensive resource for comparative bacterial genomics. Nucleic Acids Res 36:D543–D546

    Article  CAS  Google Scholar 

  22. Aziz R et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75

    Article  Google Scholar 

  23. Langille MGI, Brinkman FSL (2009) IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics 25:664–665

    Article  CAS  Google Scholar 

  24. Carver TJ et al (2005) ACT: the Artemis comparison tool. Bioinformatics 21:3422–3423

    Article  CAS  Google Scholar 

  25. Stothard P, Wishart DS (2005) Circular genome visualization and exploration using CGView. Bioinformatics 21:537–539

    Article  CAS  Google Scholar 

  26. Grant J, Arantes A, Stothard P (2012) Comparing thousands of circular genomes using the CGView comparison tool. BMC Genomics 13:202

    Article  CAS  Google Scholar 

  27. Laing C et al (2010) Pan-genome sequence analysis using Panseq: an online tool for the rapid analysis of core and accessory genomic regions. BMC Bioinformatics 11:461

    Article  Google Scholar 

  28. Tamura K et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  29. Gao F, Zhang CT (2008) Ori-Finder: a web-based system for finding oriCs in unannotated bacterial genomes. BMC Bioinformatics 9:79

    Article  Google Scholar 

Download references

Acknowledgements

Research in R.C. Levesque’s laboratory is funded by the Canadian Institute for Health Research (CIHR), the CIHR-Fonds de Recherche du Québec en Santé (FRQS)-Québec Respiratory Health Network (RSR) and by the Natural Sciences and Engineering Research Council of Canada (NSERC). Research in N.P. Tucker’s laboratory has been supported through grants from the Royal Society and the University of Strathclyde. N.P.T. and R.C.L. are also grateful to the Society for General Microbiology for sponsoring N.P.T. for a research visit to the corresponding author’s laboratory. J. Jeukens received a CIHR-FRQS-RSR fellowship award and was part of the Québec respiratory health training program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Jeukens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jeukens, J., Boyle, B., Tucker, N.P., Levesque, R.C. (2014). Strategy for Genome Sequencing Analysis and Assembly for Comparative Genomics of Pseudomonas Genomes. In: Filloux, A., Ramos, JL. (eds) Pseudomonas Methods and Protocols. Methods in Molecular Biology, vol 1149. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-0473-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0473-0_43

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-0472-3

  • Online ISBN: 978-1-4939-0473-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics