Skip to main content

Mining the Pseudomonas Genome

  • Protocol
  • First Online:
Pseudomonas Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1149))

Abstract

Pseudomonas species were targeted early for genomic studies since they were noted for their diverse metabolic capacity, ability to inhabit a wide range of environments and hosts, and include notable human and agriculturally relevant pathogens. As more genomes are sequenced, the power of genome-scale analyses are increasing and a wide range of analyses are now possible. The Pseudomonas Genome database has contributed to this effort by providing peer-reviewed, continually updated annotations of the Pseudomonas aeruginosa PAO1 reference strain genome plus integrated data and analyses of related Pseudomonas species. Analyses are now available via multiple resources to facilitate identification and characterization of drug targets, virulence factors, regulatory elements, genomic islands, genome rearrangements, orthologs, single nucleotide polymorphisms, and multiple other gene/protein-based analyses from gene expression to protein structure. We describe here how the Pseudomonas Genome Database and other bioinformatics resources can be leveraged to help Pseudomonas researchers “mine” Pseudomonas genomes, and associated genome-scale data, to facilitate new discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stover CK et al (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964

    Article  CAS  Google Scholar 

  2. Brinkman FS et al (2000) Sequencing solution: use volunteer annotators organized via internet. Nature 406:933

    Article  CAS  Google Scholar 

  3. Winsor GL et al (2005) Pseudomonas aeruginosa genome database and PseudoCAP: facilitating community-based, continually updated, genome annotation. Nucleic Acids Res 33 (Database Issue):D338–D343

    Article  CAS  Google Scholar 

  4. Joardar V et al (2005) Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition. J Bacteriol 187:6488–6498

    Article  CAS  Google Scholar 

  5. Winsor GL et al (2009) Pseudomonas genome database: facilitating user-friendly, comprehensive comparisons of microbial genomes. Nucleic Acids Res 37:D483–D488

    Article  CAS  Google Scholar 

  6. Winsor GL et al (2011) Pseudomonas genome database: improved comparative analysis and population genomics capability for Pseudomonas genomes. Nucleic Acids Res 39:D596–D600

    Article  CAS  Google Scholar 

  7. Ashburner M et al (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25:25–29

    Article  CAS  Google Scholar 

  8. Caspi R et al (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 40:D742–D753

    Article  CAS  Google Scholar 

  9. Kouranov A et al (2006) The RCSB PDB information portal for structural genomics. Nucleic Acids Res 34:D302–D305

    Article  CAS  Google Scholar 

  10. Liberati NT et al (2006) An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A 103:2833–2838

    Article  CAS  Google Scholar 

  11. Lewenza S et al (2005) Construction of a mini-Tn5-luxCDABE mutant library in Pseudomonas aeruginosa PAO1: a tool for identifying differentially regulated genes. Genome Res 15: 583–589

    Article  CAS  Google Scholar 

  12. Jacobs MA et al (2003) Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 100:14339–14344

    Article  CAS  Google Scholar 

  13. Flicek P et al (2012) Ensembl 2012. Nucleic Acids Res 40:D84–D90

    Article  CAS  Google Scholar 

  14. Knox C et al (2011) DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 39:D1035–D1041

    Article  CAS  Google Scholar 

  15. Ho Sui SJ et al (2009) The association of virulence factors with genomic islands. PLoS One 4:e8094

    Article  Google Scholar 

  16. Haft DH et al (2003) The TIGRFAMs database of protein families. Nucleic Acids Res 31:371–373

    Article  CAS  Google Scholar 

  17. Tatusov RL et al (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41

    Article  Google Scholar 

  18. Stein LD (2013) Using GBrowse 2.0 to visualize and share next-generation sequence data. Brief Bioinform 14:162–171

    Article  CAS  Google Scholar 

  19. Li H et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  Google Scholar 

  20. Barrett T et al (2011) NCBI GEO: archive for functional genomics data sets—10 years on. Nucleic Acids Res 39:D1005–D1010

    Article  CAS  Google Scholar 

  21. Langille MG et al (2009) IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics 25:664–665

    Article  CAS  Google Scholar 

  22. Waack S et al (2006) Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinformatics 7:142

    Article  Google Scholar 

  23. Hsiao W et al (2003) IslandPath: aiding detection of genomic islands in prokaryotes. Bioinformatics 19:418–420

    Article  CAS  Google Scholar 

  24. Langille MG et al (2008) Evaluation of genomic island predictors using a comparative genomics approach. BMC Bioinformatics 9: 329

    Article  Google Scholar 

  25. Fulton DL et al (2006) Improving the specificity of high-throughput ortholog prediction. BMC Bioinformatics 7:270

    Article  Google Scholar 

  26. Whiteside MD et al (2013) OrtholugeDB: a bacterial and archaeal orthology resource for improved comparative genomic analysis. Nucleic Acids Res 41:D366–D376

    Article  CAS  Google Scholar 

  27. Darling AC et al (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403

    Article  CAS  Google Scholar 

  28. Darling AE et al (2010) progressive Mauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147

    Article  Google Scholar 

  29. Rissman AI et al (2009) Reordering contigs of draft genomes using the mauve aligner. Bioinformatics 25:2071–2073

    Article  CAS  Google Scholar 

  30. Kurtz S et al (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12

    Article  Google Scholar 

  31. Klimke W et al (2011) Solving the problem: genome annotation standards before the data deluge. Stand Genomic Sci 5:168–193

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We wish to acknowledge the efforts of the many genome sequencing projects and Pseudomonas researchers that have made our analysis possible. FSLB is a Michael Smith Foundation for Health Research (MSFHR) Senior Scholar. Critical funding was provided by Cystic Fibrosis Foundation Therapeutics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona S. L. Brinkman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Winsor, G.L., Brinkman, F.S.L. (2014). Mining the Pseudomonas Genome. In: Filloux, A., Ramos, JL. (eds) Pseudomonas Methods and Protocols. Methods in Molecular Biology, vol 1149. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-0473-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0473-0_33

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-0472-3

  • Online ISBN: 978-1-4939-0473-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics