Skip to main content

Qualitative and Quantitative Assays for Flagellum-Mediated Chemotaxis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1149))

Abstract

A primary driving force during bacterial evolution was the capacity to access compounds necessary for growth and survival. Since the species of the genus Pseudomonas are characterized by metabolic versatility, these bacteria have developed chemotactic behaviors towards a wide range of different compounds. The specificity of a chemotactic response is determined by the chemoreceptor, which is at the beginning of the signaling cascade and to which chemoattractants and chemorepellents bind. The number of chemoreceptor genes of Pseudomonas species is significantly higher than the average number in motile bacteria. Although some of the receptors have been annotated with a function, the cognate signal molecules for the majority of them still need to be identified. Different qualitative and quantitative methods are presented that can be used to study flagellum-mediated taxis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wuichet K, Zhulin IB (2010) Origins and diversification of a complex signal transduction system in prokaryotes. Sci Signal 3:r50

    Article  Google Scholar 

  2. Hazelbauer GL, Falke JJ, Parkinson JS (2008) Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci 33:9–19

    Article  CAS  Google Scholar 

  3. Lacal J, Garcia-Fontana C, Munoz-Martinez F, Ramos J-L, Krell T (2010) Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions. Environ Microbiol 12:2873–2884

    Google Scholar 

  4. Alexandre G, Greer-Phillips S, Zhulin IB (2004) Ecological role of energy taxis in microorganisms. FEMS Microbiol Rev 28:113–126

    Article  CAS  Google Scholar 

  5. Kato J, Kim HE, Takiguchi N, Kuroda A, Ohtake H (2008) Pseudomonas aeruginosa as a model microorganism for investigation of chemotactic behaviors in ecosystem. J Biosci Bioeng 106:1–7

    Article  CAS  Google Scholar 

  6. Kuroda A, Kumano T, Taguchi K, Nikata T, Kato J, Ohtake H (1995) Molecular cloning and characterization of a chemotactic transducer gene in Pseudomonas aeruginosa. J Bacteriol 177:7019–7025

    Article  CAS  Google Scholar 

  7. Kelly-Wintenberg K, Montie TC (1994) Chemotaxis to oligopeptides by Pseudomonas aeruginosa. Appl Environ Microbiol 60:363–367

    Article  CAS  Google Scholar 

  8. Kato J, Ito A, Nikata T, Ohtake H (1992) Phosphate taxis in Pseudomonas aeruginosa. J Bacteriol 174:5149–5151

    Article  CAS  Google Scholar 

  9. Sly LM, Worobec EA, Perkins RE, Phibbs PV Jr (1993) Reconstitution of glucose uptake and chemotaxis in Pseudomonas aeruginosa glucose transport defective mutants. Can J Microbiol 39:1079–1083

    Article  CAS  Google Scholar 

  10. Ohga T, Masduki A, Kato J, Ohtake H (1993) Chemotaxis away from thiocyanic and isothiocyanic esters in Pseudomonas aeruginosa. FEMS Microbiol Lett 113:63–66

    Article  CAS  Google Scholar 

  11. Harwood CS (1989) A methyl-accepting protein is involved in benzoate taxis in Pseudomonas putida. J Bacteriol 171:4603–4608

    Article  CAS  Google Scholar 

  12. Grimm AC, Harwood CS (1997) Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene. Appl Environ Microbiol 63:4111–4115

    Article  CAS  Google Scholar 

  13. Parales RE, Ditty JL, Harwood CS (2000) Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Appl Environ Microbiol 66:4098–4104

    Article  CAS  Google Scholar 

  14. Gordillo F, Chavez FP, Jerez CA (2007) Motility and chemotaxis of Pseudomonas sp. B4 towards polychlorobiphenyls and chlorobenzoates. FEMS Microbiol Ecol 60:322–328

    Article  CAS  Google Scholar 

  15. Shitashiro M, Kato J, Fukumura T, Kuroda A, Ikeda T, Takiguchi N, Ohtake H (2003) Evaluation of bacterial aerotaxis for its potential use in detecting the toxicity of chemicals to microorganisms. J Biotechnol 101:11–18

    Article  CAS  Google Scholar 

  16. Neal AL, Ahmad S, Gordon-Weeks R, Ton J (2012) Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the Rhizosphere. PLoS One 7:e35498

    Article  CAS  Google Scholar 

  17. Alvarez-Ortega C, Harwood CS (2007) Identification of a malate chemoreceptor in Pseudomonas aeruginosa by screening for chemotaxis defects in an energy taxis-deficient mutant. Appl Environ Microbiol 73:7793–7795

    Article  CAS  Google Scholar 

  18. Lacal J, Alfonso C, Liu X, Parales RE, Morel B, Conejero-Lara F, Rivas G, Duque E, Ramos J-L, Krell T (2010) Identification of a chemoreceptor for tricarboxylic acid cycle intermediates: differential chemotactic response towards receptor ligands. J Biol Chem 285:23126–23136

    Google Scholar 

  19. Liu X, Parales RE (2009) Bacterial chemotaxis to atrazine and related s-triazines. Appl Environ Microbiol 75:5481–5488

    Article  CAS  Google Scholar 

  20. Liu X, Wood PL, Parales JV, Parales RE (2009) Chemotaxis to pyrimidines and identification of a cytosine chemoreceptor in Pseudomonas putida. J Bacteriol 191:2909–2916

    Article  CAS  Google Scholar 

  21. Dash SS, Sailaja NS, Gummadi SN (2008) Chemotaxis of Pseudomonas sp. to caffeine and related methylxanthines. J Basic Microbiol 48:130–134

    Article  Google Scholar 

  22. Wu H, Kato J, Kuroda A, Ikeda T, Takiguchi N, Ohtake H (2000) Identification and characterization of two chemotactic transducers for inorganic phosphate in Pseudomonas aeruginosa. J Bacteriol 182:3400–3404

    Article  CAS  Google Scholar 

  23. Taguchi K, Fukutomi H, Kuroda A, Kato J, Ohtake H (1997) Genetic identification of chemotactic transducers for amino acids in Pseudomonas aeruginosa. Microbiology 143(Pt 10):3223–3229

    Article  CAS  Google Scholar 

  24. Grimm AC, Harwood CS (1999) NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J Bacteriol 181:3310–3316

    Article  CAS  Google Scholar 

  25. Lacal J, Munoz-Martinez F, Reyes-Darias JA, Duque E, Matilla M, Segura A, Calvo JJ, Jimenez-Sanchez C, Krell T, Ramos J-L (2011) Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas. Environ Microbiol 13:1733–1744

    Google Scholar 

  26. Moulton RC, Montie TC (1979) Chemotaxis by Pseudomonas aeruginosa. J Bacteriol 137:274–280

    Article  CAS  Google Scholar 

  27. Stinson MW, Cohen MA, Merrick JM (1977) Purification and properties of the periplasmic glucose-binding protein of Pseudomonas aeruginosa. J Bacteriol 131:672–681

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Andalusian regional government Junta de Andalucía (grant P09-RNM-4509 to T.K.) and the Spanish Ministry for Economy and Competitiveness (grant Bio2010-16937 to T.K.). We thank Juan-Luis Ramos for reading the chapter and his continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tino Krell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Darias, J.A.R., García-Fontana, C., Lugo, A.C., Rico-Jiménez, M., Krell, T. (2014). Qualitative and Quantitative Assays for Flagellum-Mediated Chemotaxis. In: Filloux, A., Ramos, JL. (eds) Pseudomonas Methods and Protocols. Methods in Molecular Biology, vol 1149. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-0473-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0473-0_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-0472-3

  • Online ISBN: 978-1-4939-0473-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics