Skip to main content

Photoactivatable Fluorescent Proteins for Super-resolution Microscopy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1148))

Abstract

Super-resolution fluorescence microscopy techniques such as simulated emission depletion (STED) microscopy and photoactivated localization microscopy (PALM) allow substructures, organelles or even proteins within a cell to be imaged with a resolution far below the diffraction limit of ~200 nm. The development of advanced fluorescent proteins, especially photoactivatable fluorescent proteins of the GFP family, has greatly contributed to the successful application of these techniques to live-cell imaging. Here, we will illustrate how two fluorescent proteins with different photoactivation mechanisms can be utilized in high resolution dual color PALM imaging to obtain insights into a cellular process that otherwise would not be accessible. We will explain how to set up and perform the experiment and how to use our latest software “a-livePALM” for fast and efficient data analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Mikr Anat 9:413–468. doi:10.1007/BF02956173

    Article  Google Scholar 

  2. Hedde PN, Nienhaus GU (2010) Optical imaging of nanoscale cellular structures. Biophys Rev 2:147–158. doi:10.1007/s12551-010-0037-0

    Article  CAS  Google Scholar 

  3. Hell SW (2007) Far-field optical nanoscopy. Science 316(5828):1153–1158. doi:10.1126/science.1137395

    Article  CAS  PubMed  Google Scholar 

  4. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782. doi:10.1364/OL.19.000780

    Article  CAS  PubMed  Google Scholar 

  5. Bossi M, Fölling J, Dyba M, Westphal V, Hell SW (2006) Breaking the diffraction resolution barrier in far-field microscopy by molecular optical bistability. New J Phys 8:275. doi:10.1088/1367-2630/8/11/275

    Article  Google Scholar 

  6. Hofmann M, Eggeling C, Jakobs S, Hell SW (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci U S A 102(49):17565–17569. doi:10.1073/pnas.0506010102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645. doi:10.1126/science.1127344

    Article  CAS  PubMed  Google Scholar 

  8. Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272. doi:10.1529/biophysj.106.091116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795. doi:10.1038/nmeth929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J (2009) Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc Natl Acad Sci U S A 106(52):22287–22292. doi:10.1073/pnas.0907866106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Stiel AC, Andresen M, Bock H, Hilbert M, Schilde J, Schönle A, Eggeling C, Egner A, Hell SW, Jakobs S (2008) Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy. Biophys J 95(6):2989–2997. doi:10.1529/biophysj.108.130146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Lukyanov KA, Chudakov DM, Lukyanov S, Verkhusha VV (2005) Innovation: photoactivatable fluorescent proteins. Nat Rev Mol Cell Biol 6(11):885–891. doi:10.1038/nrm1741

    Article  CAS  PubMed  Google Scholar 

  13. Lippincott-Schwartz J, Patterson GH (2009) Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol 19(11):555–565. doi:10.1016/j.tcb.2009.09.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Bourgeois D, Adam V (2012) Reversible photoswitching in fluorescent proteins: a mechanistic view. IUBMB Life 64(6):482–491. doi:10.1002/iub.1023

    Article  CAS  PubMed  Google Scholar 

  15. Finan K, Flottmann B, Heilemann M (2013) Photoswitchable fluorophores for single-molecule localization microscopy. Methods Mol Biol 950:131–151. doi:10.1007/978-1-62703-137-0_9

    PubMed  Google Scholar 

  16. Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90(3):1103–1163. doi:10.1152/physrev.00038.2009

    Article  CAS  PubMed  Google Scholar 

  17. Wiedenmann J, Nienhaus GU (2006) Live-cell imaging with EosFP and other photoactivatable marker proteins of the GFP family. Expert Rev Proteomics 3(3):361–374. doi:10.1586/14789450.3.3.361

    Article  CAS  PubMed  Google Scholar 

  18. Day RN, Davidson MW (2009) The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev 38(10):2887–2921. doi:10.1039/b901966a

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Patterson GH (2011) Highlights of the optical highlighter fluorescent proteins. J Microsc 243(1):1–7. doi:10.1111/j.1365-2818.2011.03505.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bretschneider S, Eggeling C, Hell SW (2007) Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phys Rev Lett 98(21):218103. doi:10.1103/PhysRevLett.98.218103

    Article  PubMed  Google Scholar 

  21. Dedecker P, Hotta J, Flors C, Sliwa M, Uji-i H, Roeffaers MB, Ando R, Mizuno H, Miyawaki A, Hofkens J (2007) Subdiffraction imaging through the selective donut-mode depletion of thermally stable photoswitchable fluorophores: numerical analysis and application to the fluorescent protein Dronpa. J Am Chem Soc 129(51):16132–16141. doi:10.1021/ja076128z

    Article  CAS  PubMed  Google Scholar 

  22. Hedde PN, Fuchs J, Oswald F, Wiedenmann J, Nienhaus GU (2009) Online image analysis software for photoactivation localization microscopy. Nat Methods 6(10):689–690. doi:10.1038/nmeth1009-689

    Article  CAS  PubMed  Google Scholar 

  23. Quan T, Li P, Long F, Zeng S, Luo Q, Hedde PN, Nienhaus GU, Huang Z-L (2010) Ultra-fast, high-precision image analysis for localization-based super resolution microscopy. Opt Express 18(11):11867–11876. doi:10.1364/OE.18.011867

    Article  PubMed  Google Scholar 

  24. Subach FV, Patterson GH, Manley S, Gillette JM, Lippincott-Schwartz J, Verkhusha VV (2009) Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods 6(2):153–159. doi:10.1038/nmeth.1298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Flors C, Hotta J, Uji-i H, Dedecker P, Ando R, Mizuno H, Miyawaki A, Hofkens J (2007) A stroboscopic approach for fast photoactivation-localization microscopy with Dronpa mutants. J Am Chem Soc 129(45):13970–13977. doi:10.1021/ja074704l

    Article  CAS  PubMed  Google Scholar 

  26. Lee SH, Shin JY, Lee A, Bustamante C (2012) Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM). Proc Natl Acad Sci U S A 109(43):17436–17441. doi:10.1073/pnas.1215175109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Nienhaus GU, Nienhaus K, Hölzle A, Ivanchenko S, Renzi F, Oswald F, Wolff M, Schmitt F, Röcker C, Vallone B, Weidemann W, Heilker R, Nar H, Wiedenmann J (2006) Photoconvertible fluorescent protein EosFP: biophysical properties and cell biology applications. Photochem Photobiol 82(2):351–358. doi:10.1562/2005-05-19-RA-533

    Article  CAS  PubMed  Google Scholar 

  28. Nienhaus K, Nienhaus GU, Wiedenmann J, Nar H (2005) Structural basis for photo-induced protein cleavage and green-to-red conversion of fluorescent protein EosFP. Proc Natl Acad Sci U S A 102(26):9156–9159. doi:10.1073/pnas.0501874102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Adam V, Lelimousin M, Boehme S, Desfonds G, Nienhaus K, Field MJ, Wiedenmann J, McSweeney S, Nienhaus GU, Bourgeois D (2008) Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations. Proc Natl Acad Sci U S A 105(47):18343–18348. doi:10.1073/pnas.0805949105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Fuchs J, Böhme S, Oswald F, Hedde PN, Krause M, Wiedenmann J, Nienhaus GU (2010) A photoactivatable marker protein for pulse-chase imaging with superresolution. Nat Methods 7:627–630. doi:10.1038/nmeth.1477

    Article  CAS  PubMed  Google Scholar 

  31. Brodehl A, Hedde PN, Dieding M, Fatima A, Walhorn V, Gayda S, Saric T, Klauke B, Gummert J, Anselmetti D, Heilemann M, Nienhaus GU, Milting H (2012) Dual color photoactivation localization microscopy of cardiomyopathy-associated desmin mutants. J Biol Chem 287(19):16047–16057. doi:10.1074/jbc.M111.313841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Huisken J, Stainier DY (2009) Selective plane illumination microscopy techniques in developmental biology. Development 136(12):1963–1975. doi:10.1242/dev.022426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Cella Zanacchi F, Lavagnino Z, Perrone Donnorso M, Del Bue A, Furia L, Faretta M, Diaspro A (2011) Live-cell 3D super-resolution imaging in thick biological samples. Nat Methods 8(12):1047–1049. doi:10.1038/nmeth.1744

    Article  PubMed  Google Scholar 

  34. Huang ZL, Zhu H, Long F, Ma H, Qin L, Liu Y, Ding J, Zhang Z, Luo Q, Zeng S (2011) Localization-based super-resolution microscopy with an sCMOS camera. Opt Express 19(20):19156–19168. doi:10.1364/OE.19.019156

    Article  PubMed  Google Scholar 

  35. Long F, Zeng S, Huang ZL (2012) Localization-based super-resolution microscopy with an sCMOS camera part II: experimental methodology for comparing sCMOS with EMCCD cameras. Opt Express 20(16):17741–17759. doi:10.1364/OE.20.017741

    Article  PubMed  Google Scholar 

  36. Li Y, Ishitsuka Y, Hedde PN, Nienhaus GU (2013) Fast and efficient molecule detection in localization-based super-resolution microscopy by parallel adaptive histogram equalization. ACS Nano 7(6):5207–5214. doi:10.1021/nn4009388

    Article  CAS  PubMed  Google Scholar 

  37. Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF, Betzig E, Lippincott-Schwartz J (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5(2):155–157. doi:10.1038/nmeth.1176

    Article  CAS  PubMed  Google Scholar 

  38. Veatch SL, Machta BB, Shelby SA, Chiang EN, Holowka DA, Baird BA (2012) Correlation functions quantify super-resolution images and estimate apparent clustering due to over-counting. PLoS One 7(2):e31457. doi:10.1371/journal.pone.0031457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Sengupta P, Jovanovic-Talisman T, Skoko D, Renz M, Veatch SL, Lippincott-Schwartz J (2011) Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat Methods 8(11):969–975. doi:10.1038/nmeth.1704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Owen DM, Rentero C, Rossy J, Magenau A, Williamson D, Rodriguez M, Gaus K (2010) PALM imaging and cluster analysis of protein heterogeneity at the cell surface. J Biophotonics 3(7):446–454. doi:10.1002/jbio.200900089

    Article  CAS  PubMed  Google Scholar 

  41. Henriques R, Lelek M, Fornasiero EF, Valtorta F, Zimmer C, Mhlanga MM (2010) QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat Methods 7(5):339–340. doi:10.1038/nmeth0510-339

    Article  CAS  PubMed  Google Scholar 

  42. Holden SJ, Uphoff S, Kapanidis AN (2011) DAOSTORM: an algorithm for high-density super-resolution microscopy. Nat Methods 8(4):279–280. doi:10.1038/nmeth0411-279

    Article  CAS  PubMed  Google Scholar 

  43. Wolter S, Schuttpelz M, Tscherepanow M, Van de Linde S, Heilemann M, Sauer M (2010) Real-time computation of subdiffraction-resolution fluorescence images. J Microsc 237(1):12–22. doi:10.1111/j.1365-2818.2009.03287.x

    Article  CAS  PubMed  Google Scholar 

  44. York AG, Ghitani A, Vaziri A, Davidson MW, Shroff H (2011) Confined activation and subdiffractive localization enables whole-cell PALM with genetically expressed probes. Nat Methods 8(4):327–333. doi:10.1038/nmeth.1571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Annibale P, Vanni S, Scarselli M, Rothlisberger U, Radenovic A (2011) Identification of clustering artifacts in photoactivated localization microscopy. Nat Methods 8(7):527–528. doi:10.1038/nmeth.1627

    Article  CAS  PubMed  Google Scholar 

  46. Roy A, Field MJ, Adam V, Bourgeois D (2011) The nature of transient dark states in a photoactivatable fluorescent protein. J Am Chem Soc 133(46):18586–18589. doi:10.1021/ja2085355

    Article  CAS  PubMed  Google Scholar 

  47. Wiedenmann J, Ivanchenko S, Oswald F, Schmitt F, Röcker C, Salih A, Spindler KD, Nienhaus GU (2004) EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci U S A 101(45):15905–15910. doi:10.1073/pnas.0403668101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Wiedenmann J, Gayda S, Adam V, Oswald F, Nienhaus K, Bourgeois D, Nienhaus GU (2011) From EosFP to mIrisFP: structure-based development of advanced photoactivatable marker proteins of the GFP-family. J Biophotonics 4(6):377–390. doi:10.1002/jbio.201000122

    Article  CAS  PubMed  Google Scholar 

  49. Gayda S, Nienhaus K, Nienhaus GU (2012) Mechanistic insights into reversible photoactivation in proteins of the GFP family. Biophys J 103(12):2521–2531. doi:10.1016/j.bpj.2012.11.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) and the State of Baden-Württemberg through the Center for Functional Nanostructures (CFN) and by DFG grant Ni 291/9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ulrich Nienhaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ishitsuka, Y., Nienhaus, K., Nienhaus, G.U. (2014). Photoactivatable Fluorescent Proteins for Super-resolution Microscopy. In: Cambridge, S. (eds) Photoswitching Proteins. Methods in Molecular Biology, vol 1148. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0470-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0470-9_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0469-3

  • Online ISBN: 978-1-4939-0470-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics