Skip to main content

Using Photoactivatable GFP to Track Axonal Transport Kinetics

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1148))

Abstract

The advent of photoactivatable tools has revolutionized imaging of dynamic cellular processes. One such application is to visualize axonal transport—an intricate and dynamic process by which proteins and other macromolecules are conveyed from their sites of synthesis in the cell bodies to their destinations within axons and synapses. High-quality dynamic imaging of axonal transport using photoactivatable vectors can now be routinely performed using epifluorescence microscopes and CCD cameras that are standard in most laboratories, yet this is largely underutilized. Here we describe detailed protocols for imaging cargoes moving in fast and slow axonal transport in axons of cultured hippocampal neurons.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Droz B, Leblond CP (1962) Migration of proteins along the axons of the sciatic nerve. Science 137(3535):1047–1048

    Article  CAS  PubMed  Google Scholar 

  2. Black MM, Lasek RJ (1980) Slow components of axonal transport: two cytoskeletal networks. J Cell Biol 86(2):616–623

    Article  CAS  PubMed  Google Scholar 

  3. Brown A (2003) Axonal transport of membranous and nonmembranous cargoes: a unified perspective. J Cell Biol 160(6):817–821. doi: 10.1083/jcb.200212017, jcb.200212017 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Goldstein AY, Wang X, Schwarz TL (2008) Axonal transport and the delivery of pre-synaptic components. Curr Opin Neurobiol 18(5):495–503. doi:10.1016/j.conb.2008.10.003, S0959-4388(08)00130-X [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Roy S, Zhang B, Lee VM, Trojanowski JQ (2005) Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol 109(1):5–13. doi:10.1007/s00401-004-0952-x

    Article  PubMed  Google Scholar 

  6. Tang Y, Scott DA, Das U, Edland SD, Radomski K, Koo EH, Roy S (2012) Early and selective impairments in axonal transport kinetics of synaptic cargoes induced by soluble amyloid beta-protein oligomers. Traffic 13(5):681–693. doi:10.1111/j.1600-0854.2012.01340.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Gauthier-Kemper A, Weissmann C, Golovyashkina N, Sebo-Lemke Z, Drewes G, Gerke V, Heinisch JJ, Brandt R (2011) The frontotemporal dementia mutation R406W blocks tau’s interaction with the membrane in an annexin A2-dependent manner. J Cell Biol 192(4):647–661. doi:10.1083/jcb.201007161, jcb.201007161 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Roy S, Yang G, Tang Y, Scott DA (2011) A simple photoactivation and image analysis module for visualizing and analyzing axonal transport with high temporal resolution. Nat Protoc 7(1):62–68. doi:10.1038/nprot.2011.428, nprot.2011.428 [pii]

    Article  PubMed Central  PubMed  Google Scholar 

  9. Scott DA, Das U, Tang Y, Roy S (2011) Mechanistic logic underlying the axonal transport of cytosolic proteins. Neuron 70(3):441–454. doi:10.1016/j.neuron.2011.03.022, S0896-6273(11)00295-9 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Tang Y, Das U, Scott DA, Roy S (2012) The slow axonal transport of alpha-synuclein—mechanistic commonalities amongst diverse cytosolic cargoes. Cytoskeleton (Hoboken) 69(7):506–513. doi:10.1002/cm.21019

    Article  CAS  Google Scholar 

  11. Trivedi N, Jung P, Brown A (2007) Neurofilaments switch between distinct mobile and stationary states during their transport along axons. J Neurosci 27(3):507–516. doi:10.1523/JNEUROSCI.4227-06.2007, 27/3/507 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Weissmann C, Reyher HJ, Gauthier A, Steinhoff HJ, Junge W, Brandt R (2009) Microtubule binding and trapping at the tip of neurites regulate tau motion in living neurons. Traffic 10(11):1655–1668. doi:10.1111/j.1600-0854.2009.00977.x, TRA977 [pii]

    Article  CAS  PubMed  Google Scholar 

  13. Taylor NJ, Wang L, Brown A (2012) Neurofilaments are flexible polymers that often fold and unfold, but they move in a fully extended configuration. Cytoskeleton (Hoboken) 69(7): 535–544. doi:10.1002/cm.21039

    Article  CAS  Google Scholar 

  14. Fath T, Ke YD, Gunning P, Gotz J, Ittner LM (2009) Primary support cultures of hippocampal and substantia nigra neurons. Nat Protoc 4(1):78–85. doi:10.1038/nprot.2008.199, nprot.2008.199 [pii]

    Article  CAS  PubMed  Google Scholar 

  15. Roy S, Winton MJ, Black MM, Trojanowski JQ, Lee VM (2007) Rapid and intermittent cotransport of slow component-b proteins. J Neurosci 27(12):3131–3138

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Past and ongoing work on slow axonal transport in the Roy lab is supported by grants from the NIH (R01NS075233), the March of Dimes (Basil O’ Connor), and start-up funds from UCSD to SR. The authors thank the many researchers who have generously shared constructs with us.

Conflict of interest: The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhojit Roy M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ganguly, A., Roy, S. (2014). Using Photoactivatable GFP to Track Axonal Transport Kinetics. In: Cambridge, S. (eds) Photoswitching Proteins. Methods in Molecular Biology, vol 1148. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0470-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0470-9_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0469-3

  • Online ISBN: 978-1-4939-0470-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics