Skip to main content

Electron Transferases

  • Protocol
  • First Online:
Flavins and Flavoproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1146))

Abstract

The flavin isoalloxazine ring in electron transferases functions in a redox capacity, being able to take up electrons from a donor to subsequently deliver them to an acceptor. The main characteristics of these flavoproteins, including their unique ability to mediate obligatory processes of two-electron transfers with those involving single-electron transfer, are here described. To illustrate the versatility of these proteins, the acquired knowledge of the function of the two electron transferases involved in the cyanobacterial photosynthetic electron transfer from photosystem I to NADP+ is presented. Many aspects of their biochemistry and biophysics have been extensively characterized using site-directed mutagenesis, steady-state and transient kinetics, spectroscopy, calorimetry, X-ray crystallography, electron paramagnetic resonance, and computational methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Massey V (2000) The chemical and biological versatility of riboflavin. Biochem Soc Trans 28:283–296

    Article  PubMed  CAS  Google Scholar 

  2. Müller F (1990) Chemistry and biochemistry of flavoenzymes. CRC Press, Boca Raton, FL

    Google Scholar 

  3. Miura R (2001) Versatility and specificity in flavoenzymes: control mechanisms of flavin reactivity. Chem Rec 1:183–194

    Article  PubMed  CAS  Google Scholar 

  4. Zhou Z, Swenson RP (1995) Electrostatic effects of surface acidic amino acid residues on the oxidation–reduction potentials of the flavodoxin from Desulfovibrio vulgaris (Hildenborough). Biochemistry 34:3183–3192

    Article  PubMed  CAS  Google Scholar 

  5. Mayhew SG, Ludwig ML (1975) Flavodoxins and electron-transferring flavoproteins. Enzymes 12:57

    Article  CAS  Google Scholar 

  6. Mayhew SG, Foust GP, Massey V (1969) Oxidation-reduction properties of flavodoxin from Peptostreptococcus elsdenii. J Biol Chem 244:803–810

    PubMed  CAS  Google Scholar 

  7. Brettel K, Byrdin M (2010) Reaction mechanisms of DNA photolyase. Curr Opin Struct Biol 20:693–701

    Article  PubMed  CAS  Google Scholar 

  8. Sancar A (2003) Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem Rev 103:2203–2237

    Article  PubMed  CAS  Google Scholar 

  9. Williams RE, Bruce NC (2002) ‘New uses for an old enzyme’—the old yellow enzyme family of flavoenzymes. Microbiology 148:1607–1614

    PubMed  CAS  Google Scholar 

  10. Murataliev MB, Feyereisen R, Walker FA (2004) Electron transfer by diflavin reductases. Biochim Biophys Acta 1698:1–26

    Article  PubMed  CAS  Google Scholar 

  11. Lederer F (2011) Another look at the interaction between mitochondrial cytochrome c and flavocytochrome b 2. Eur Biophys J 40:1283–1299

    Article  PubMed  CAS  Google Scholar 

  12. Im S-C, Waskell L (2011) The interaction of microsomal cytochrome P450 2B4 with its redox partners, cytochrome P450 reductase and cytochrome b 5. Arch Biochem Biophys 507:144–153

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Aliverti A, Pandini V, Pennati A, de Rosa M, Zanetti G (2008) Structural and functional diversity of ferredoxin-NADP+ reductases. Arch Biochem Biophys 474:283–291

    Article  PubMed  CAS  Google Scholar 

  14. Sevrioukova IF (2011) Apoptosis-inducing factor: structure, function, and redox regulation. Antioxid Redox Signal 14:2545–2579

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Draper RD, Ingraham LL (1968) A potentiometric study of the flavin semiquinone equilibrium. Arch Biochem Biophys 125:802–808

    Article  PubMed  CAS  Google Scholar 

  16. Mayhew SG (1999) The effects of pH and semiquinone formation on the oxidation–reduction potentials of flavin mononucleotide. A reappraisal. Eur J Biochem 265:698–702

    Article  PubMed  CAS  Google Scholar 

  17. Mayhew SG, Tollin G (1992) General properties of flavodoxins. In: Müller F (ed) Chemistry and biochemistry of flavoenzymes, vol 3. CRC Press, Boca Raton, FL, pp 389–426

    Google Scholar 

  18. Massey V (1994) Activation of molecular oxygen by flavins and flavoproteins. J Biol Chem 269:22459–22462

    PubMed  CAS  Google Scholar 

  19. Ghisla S, Massey V (1989) Mechanisms of flavoprotein-catalyzed reactions. Eur J Biochem 181:1–17

    Article  PubMed  CAS  Google Scholar 

  20. Rao ST, Shaffie F, Yu C, Satyshur KA, Stockman BJ, Markley JL, Sundarlingam M (1992) Structure of the oxidized long-chain flavodoxin from Anabaena 7120 at 2 Å resolution. Protein Sci 1:1413–1427

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Massey V, Müller F, Feldberg R, Schuman M, Sullivan PA, Howell LG, Mayhew SG, Matthews RG, Foust GP (1969) The reactivity of flavoproteins with sulfite. Possible relevance to the problem of oxygen reactivity. J Biol Chem 244:3999–4006

    PubMed  CAS  Google Scholar 

  22. Arunachalam U, Massey V (1994) Studies on the oxidative half-reaction of p-hydroxyphenylacetate 3-hydroxylase. J Biol Chem 269:11795–11801

    PubMed  CAS  Google Scholar 

  23. Hunt J, Massey V (1994) Studies of the reductive half-reaction of milk xanthine dehydrogenase. J Biol Chem 269:18904–18914

    PubMed  CAS  Google Scholar 

  24. Ghisla S, Thorpe C (2004) Acyl-CoA dehydrogenases. A mechanistic overview. Eur J Biochem 271:494–508

    Article  PubMed  CAS  Google Scholar 

  25. Medina M (2009) Structural and mechanistic aspects of flavoproteins: photosynthetic electron transfer from photosystem I to NADP+. FEBS J 276:3942–3958

    Article  PubMed  CAS  Google Scholar 

  26. Nogués I, Campos LA, Sancho J, Gómez-Moreno C, Mayhew SG, Medina M (2004) Role of neighboring FMN side chains in the modulation of flavin reduction potentials and in the energetics of the FMN:apoprotein interaction in Anabaena flavodoxin. Biochemistry 43:15111–15121

    Article  PubMed  CAS  Google Scholar 

  27. Frago S, Goñi G, Herguedas B, Peregrina JR, Serrano A, Perez-Dorado I, Molina R, Gómez-Moreno C, Hermoso JA, Martinez-Julvez M, Mayhew SG, Medina M (2007) Tuning of the FMN binding and oxido-reduction properties by neighboring side chains in Anabaena flavodoxin. Arch Biochem Biophys 467:206–217

    Article  PubMed  CAS  Google Scholar 

  28. Medina M, Gómez-Moreno C (2004) Interaction of ferredoxin-NADP+ reductase with its substrates: optimal interaction for efficient electron transfer. Photosynth Res 79:113–131

    Article  PubMed  CAS  Google Scholar 

  29. Frago S, Lans I, Navarro JA, Hervás M, Edmondson DE, De la Rosa MA, Gómez-Moreno C, Mayhew SG, Medina M (2010) Dual role of FMN in flavodoxin function: electron transfer cofactor and modulation of the protein–protein interaction surface. Biochim Biophys Acta 1797:262–271

    Article  PubMed  CAS  Google Scholar 

  30. Medina M, Cammack R (2007) ENDOR and related EMR methods applied to flavoprotein radicals. Appl Magn Reson 31:457–470

    Article  CAS  Google Scholar 

  31. Martínez JI, Alonso PJ, Gómez-Moreno C, Medina M (1997) One- and two-dimensional ESEEM spectroscopy of flavoproteins. Biochemistry 36:15526–15537

    Article  PubMed  Google Scholar 

  32. Medina M, Lostao A, Sancho J, Gómez-Moreno C, Cammack R, Alonso PJ, Martínez JI (1999) Electron-nuclear double resonance and hyperfine sublevel correlation spectroscopic studies of flavodoxin mutants from Anabaena sp. PCC 7119. Biophys J 77:1712–1720

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Serre L, Vellieux FM, Medina M, Gómez-Moreno C, Fontecilla-Camps JC, Frey M (1996) X-ray structure of the ferredoxin:NADP+ reductase from the cyanobacterium Anabaena PCC 7119 at 1.8 Å resolution, and crystallographic studies of NADP+ binding at 2.25 Å resolution. J Mol Biol 263:20–39

    Article  PubMed  CAS  Google Scholar 

  34. Faro M, Gómez-Moreno C, Stankovich M, Medina M (2002) Role of critical charged residues in reduction potential modulation of ferredoxin-NADP+ reductase. Eur J Biochem 269:2656–2661

    Article  PubMed  CAS  Google Scholar 

  35. Martínez-Júlvez M, Nogués I, Faro M, Hurley JK, Brodie TB, Mayoral T, Sanz-Aparicio J, Hermoso JA, Stankovich MT, Medina M, Tollin G, Gómez-Moreno C (2001) Role of a cluster of hydrophobic residues near the FAD cofactor in Anabaena PCC 7119 ferredoxin-NADP+ reductase for optimal complex formation and electron transfer to ferredoxin. J Biol Chem 276:27498–24510

    Article  PubMed  Google Scholar 

  36. Lostao A, Gómez-Moreno C, Mayhew SG, Sancho J (1997) Differential stabilization of the three FMN redox forms by tyrosine 94 and tryptophan 57 in flavodoxin from Anabaena and its influence on the redox potentials. Biochemistry 36:14334–14344

    Article  PubMed  CAS  Google Scholar 

  37. Swenson RP, Krey GD (1994) Site-directed mutagenesis of tyrosine-98 in the flavodoxin from Desulfovibrio vulgaris (Hildenborough): regulation of oxidation–reduction properties of the bound FMN cofactor by aromatic, solvent, and electrostatic interactions. Biochemistry 33:8505–8514

    Article  PubMed  CAS  Google Scholar 

  38. Goñi G, Herguedas B, Hervás M, Peregrina JR, De la Rosa MA, Gómez-Moreno C, Navarro JA, Hermoso JA, Martínez-Júlvez M, Medina M (2009) Flavodoxin: a compromise between efficiency and versatility in the electron transfer from photosystem I to ferredoxin-NADP+ reductase. Biochim Biophys Acta 1787:144–154

    Article  PubMed  CAS  Google Scholar 

  39. Goñi G, Serrano A, Frago S, Hervás M, Peregrina JR, De la Rosa MA, Gómez-Moreno C, Navarro JA, Medina M (2008) Flavodoxin-mediated electron transfer from photosystem I to ferredoxin-NADP+ reductase in Anabaena: role of flavodoxin hydrophobic residues in protein-protein interactions. Biochemistry 47:1207–1217

    Article  PubMed  CAS  Google Scholar 

  40. Zhou Z, Swenson RP (1996) The cumulative electrostatic effect of aromatic stacking interactions and the negative electrostatic environment of the flavin mononucleotide binding site is a major determinant of the reduction potential for the flavodoxin from Desulfovibrio vulgaris [Hildenborough]. Biochemistry 35:15980–15988

    Article  PubMed  CAS  Google Scholar 

  41. Schopfer LM, Wessiak A, Massey V (1991) Interpretation of the spectra observed during oxidation of p-hydroxybenzoate hydroxylase reconstituted with modified flavins. J Biol Chem 266:13080–13085

    PubMed  CAS  Google Scholar 

  42. Ghisla S, Massey V (1986) New flavins for old: artificial flavins as active site probes of flavoproteins. Biochem J 239:1–12

    PubMed Central  PubMed  CAS  Google Scholar 

  43. Yorita K, Misaki H, Palfey BA, Massey V (2000) On the interpretation of quantitative structure–function activity relationship data for lactate oxidase. Proc Natl Acad Sci USA 97:2480–2485

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Lans I, Frago S, Medina M (2012) Understanding the FMN cofactor chemistry within the Anabaena flavodoxin environment. Biochim Biophys Acta 1817:2118–2127

    Article  PubMed  CAS  Google Scholar 

  45. Nogués I, Martínez-Júlvez M, Navarro JA, Hervás M, Armenteros L, de la Rosa MA, Brodie TB, Hurley JK, Tollin G, Gómez-Moreno C, Medina M (2003) Role of hydrophobic interactions in the flavodoxin mediated electron transfer from photosystem I to ferredoxin-NADP+ reductase in Anabaena PCC 7119. Biochemistry 42:2036–2045

    Article  PubMed  CAS  Google Scholar 

  46. Martínez-Júlvez M, Medina M, Gómez-Moreno C (1999) Ferredoxin-NADP+ reductase uses the same site for the interaction with ferredoxin and flavodoxin. J Biol Inorg Chem 4:568–578

    Article  PubMed  Google Scholar 

  47. Martínez-Júlvez M, Medina M, Hurley JK, Hafezi R, Brodie TB, Tollin G, Gómez-Moreno C (1998) Lys75 of Anabaena ferredoxin-NADP+ reductase is a critical residue for binding ferredoxin and flavodoxin during electron transfer. Biochemistry 37:13604–13613

    Article  PubMed  Google Scholar 

  48. Faro M, Frago S, Mayoral T, Hermoso JA, Sanz-Aparicio J, Gómez-Moreno C, Medina M (2002) Probing the role of glutamic acid 139 of Anabaena ferredoxin-NADP+ reductase in the interaction with substrates. Eur J Biochem 269:4938–4947

    Article  PubMed  CAS  Google Scholar 

  49. Nogués I, Hervás M, Peregrina JR, Navarro JA, de la Rosa MA, Gómez-Moreno C, Medina M (2005) Anabaena flavodoxin as an electron carrier from photosystem I to ferredoxin-NADP+ reductase. Role of flavodoxin residues in protein-protein interaction and electron transfer. Biochemistry 44:97–104

    Article  PubMed  CAS  Google Scholar 

  50. Casaus JL, Navarro JA, Hervás M, Lostao A, De la Rosa MA, Gómez-Moreno C, Sancho J, Medina M (2002) Anabaena sp. PCC 7119 flavodoxin as electron carrier from photosystem I to ferredoxin-NADP+ reductase. Role of Trp(57) and Tyr(94). J Biol Chem 277:22338–22344

    Article  PubMed  CAS  Google Scholar 

  51. Medina M, Abagyan R, Gomez-Moreno C, Fernandez-Recio J (2008) Docking analysis of transient complexes: interaction of ferredoxin-NADP+ reductase with ferredoxin and flavodoxin. Proteins 72:848–862

    Article  PubMed  CAS  Google Scholar 

  52. Tejero J, Peregrina JR, Martínez-Júlvez M, Gutierrez A, Gómez-Moreno C, Scrutton NS, Medina M (2007) Catalytic mechanism of hydride transfer between NADP+/H and ferredoxin-NADP+ reductase from Anabaena PCC 7119. Arch Biochem Biophys 459:79–90

    Article  PubMed  CAS  Google Scholar 

  53. Peregrina JR, Herguedas B, Hermoso JA, Martínez-Júlvez M, Medina M (2009) Protein motifs involved in coenzyme interaction and enzymatic efficiency in Anabaena ferredoxin-NADP+ reductase. Biochemistry 48:3109–3119

    Article  PubMed  CAS  Google Scholar 

  54. Lans I, Peregrina JR, Medina M, Garcia-Viloca M, Gonzalez-Lafont A, Lluch JM (2010) Mechanism of the hydride transfer between Anabaena Tyr303Ser FNRrd/FNRox and NADP+/H. A combined pre-steady-state kinetic/ensemble-averaged transition-state theory with multidimensional tunneling study. J Phys Chem B 114:3368–3379

    Article  PubMed  CAS  Google Scholar 

  55. Peregrina JR, Lans I, Medina M (2012) The transient catalytically competent coenzyme allocation into the active site of Anabaena ferredoxin NADP+ reductase. Eur Biophys J 41:117–128

    Article  PubMed  CAS  Google Scholar 

  56. Lans I, Medina M, Rosta E, Hummer G, Garcia-Viloca M, Lluch JM, Gonzalez-Lafont A (2012) Theoretical study of the mechanism of the hydride transfer between ferredoxin-NADP+ reductase and NADP+: the role of Tyr303. J Am Chem Soc 134:20544–20553

    Article  PubMed  CAS  Google Scholar 

  57. Medina M, Luquita A, Tejero J, Hermoso J, Mayoral T, Sanz-Aparicio J, Grever K, Gómez-Moreno C (2001) Probing the determinants of coenzyme specificity in ferredoxin-NADP+ reductase by site-directed mutagenesis. J Biol Chem 276:11902–11912

    Article  PubMed  CAS  Google Scholar 

  58. Tejero J, Martínez-Júlvez M, Mayoral T, Luquita A, Sanz-Aparicio J, Hermoso JA, Hurley JK, Tollin G, Gómez-Moreno C, Medina M (2003) Involvement of the pyrophosphate and the 2′-phosphate binding regions of ferredoxin-NADP+ reductase in coenzyme specificity. J Biol Chem 278:49203–49214

    Article  PubMed  CAS  Google Scholar 

  59. Tejero J, Pérez-Dorado I, Maya C, Martínez-Júlvez M, Sanz-Aparicio J, Gómez-Moreno C, Hermoso JA, Medina M (2005) C-terminal tyrosine of ferredoxin-NADP+ reductase in hydride transfer processes with NAD(P)+/H. Biochemistry 44:13477–13490

    Article  PubMed  CAS  Google Scholar 

  60. Piubelli L, Aliverti A, Arakaki AK, Carrillo N, Ceccarelli EA, Karplus PA, Zanetti G (2000) Competition between C-terminal tyrosine and nicotinamide modulates pyridine nucleotide affinity and specificity in plant ferredoxin-NADP+ reductase. J Biol Chem 275:10472–10476

    Article  PubMed  CAS  Google Scholar 

  61. Aliverti A, Lubberstedt T, Zanetti G, Herrmann RG, Curti B (1991) Probing the role of lysine 116 and lysine 244 in the spinach ferredoxin-NADP+ reductase by site-directed mutagenesis. J Biol Chem 266:17760–17763

    PubMed  CAS  Google Scholar 

  62. Medina M, Mendez E, Gómez-Moreno C (1992) Identification of arginyl residues involved in the binding of ferredoxin-NADP+ reductase from Anabaena sp. PCC 7119 to its substrates. Arch Biochem Biophys 299:281–286

    Article  PubMed  CAS  Google Scholar 

  63. Medina M, Mendez E, Gómez-Moreno C (1992) Lysine residues on ferredoxin-NADP+ reductase from Anabaena sp. PCC 7119 involved in substrate binding. FEBS Lett 298:25–28

    Article  PubMed  CAS  Google Scholar 

  64. Musumeci MA, Arakaki AK, Rial DV, Catalano-Dupuy DL, Ceccarelli EA (2008) Modulation of the enzymatic efficiency of ferredoxin-NADP(H) reductase by the amino acid volume around the catalytic site. FEBS J 275:1350–1366

    Article  PubMed  CAS  Google Scholar 

  65. Sanchez-Azqueta A, Musumeci MA, Martinez-Julvez M, Ceccarelli EA, Medina M (2012) Structural backgrounds for the formation of a catalytically competent complex with NADP(H) during hydride transfer in ferredoxin-NADP+ reductases. Biochim Biophys Acta 1817:1063–1071

    Article  PubMed  CAS  Google Scholar 

  66. Hermoso JA, Mayoral T, Faro M, Gómez-Moreno C, Sanz-Aparicio J, Medina M (2002) Mechanism of coenzyme recognition and binding revealed by crystal structure analysis of ferredoxin-NADP+ reductase complexed with NADP+. J Mol Biol 319:1133–1142

    Article  PubMed  CAS  Google Scholar 

  67. Carrillo N, Ceccarelli EA (2003) Open questions in ferredoxin-NADP+ reductase catalytic mechanism. Eur J Biochem 270:1900–1915

    Article  PubMed  CAS  Google Scholar 

  68. Deng Z, Aliverti A, Zanetti G, Arakaki AK, Ottado J, Orellano EG, Calcaterra NB, Ceccarelli EA, Carrillo N, Karplus PA (1999) A productive NADP+ binding mode of ferredoxin-NADP+ reductase revealed by protein engineering and crystallographic studies. Nat Struct Biol 6:847–853

    Article  PubMed  CAS  Google Scholar 

  69. Peregrina JR, Sánchez-Azqueta A, Herguedas B, Martínez-Júlvez M, Medina M (2010) Role of specific residues in coenzyme binding, charge-transfer complex formation, and catalysis in Anabaena ferredoxin NADP+-reductase. Biochim Biophys Acta 1797:1638–1646

    Article  PubMed  CAS  Google Scholar 

  70. Velázquez-Campoy A, Goñi G, Peregrina JR, Medina M (2006) Exact analysis of heterotropic interactions in proteins: characterization of cooperative ligand binding by isothermal titration calorimetry. Biophys J 91:1887–1904

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Martinez-Julvez M, Medina M, Velázquez-Campoy A (2009) Binding thermodynamics of ferredoxin:NADP+ reductase: two different protein substrates and one energetics. Biophys J 96:4966–4975

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Serrano A, Medina M (2011) Fast kinetic methods with photodiode array detection in the study of the interaction and electron transfer between flavodoxin and ferredoxin NADP+-reductase. Advances in Photosynthesis. Fundamental Aspects (Najafpour, M.M., Ed.), Intech, Rijeka, Croatia

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Science and Innovation, Grant BIO2010-1493.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milagros Medina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ferreira, P., Martínez-Júlvez, M., Medina, M. (2014). Electron Transferases. In: Weber, S., Schleicher, E. (eds) Flavins and Flavoproteins. Methods in Molecular Biology, vol 1146. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0452-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0452-5_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0451-8

  • Online ISBN: 978-1-4939-0452-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics