Natural Riboflavin Analogs

  • Danielle Biscaro Pedrolli
  • Frank Jankowitsch
  • Julia Schwarz
  • Simone Langer
  • Shinobu Nakanishi
  • Matthias MackEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1146)


Riboflavin analogs have a good potential to serve as basic structures for the development of novel anti-infectives. Riboflavin analogs have multiple cellular targets, since riboflavin (as a precursor to flavin cofactors) is active at more than one site in the cell. As a result, the frequency of developing resistance to antimicrobials based on riboflavin analogs is expected to be significantly lower. The only known natural riboflavin analog with antibiotic function is roseoflavin from the bacterium Streptomyces davawensis. This antibiotic negatively affects flavoenzymes and FMN riboswitches. Another roseoflavin producer, Streptomyces cinnabarinus, was recently identified. Possibly, flavin analogs with antibiotic activity are more widespread than anticipated. The same could be true for flavin analogs yet to be discovered, which could constitute tools for cellular chemistry, thus allowing a further extension of the catalytic spectrum of flavoenzymes.

Key words

Riboflavin analogs Antibiotics Roseoflavin Flavoenzymes FMN riboswitches 



This work was funded by the German “Federal Ministry of Education and Research” (BMBF) (FKZ 17PNT006) (“Qualifizierungs-/Profilierungsgruppe neue Technologien“) and the research training group NANOKAT (FKZ 0316052A) of the BMBF.


  1. 1.
    Kurth R, Paust J, Hähnlein W (1996) Vitamins,  Chapter 7. In: Ullmann’s Encyclopedia of industrial chemistry. Wiley-VCH, Weinheim, pp 521–530Google Scholar
  2. 2.
    Bacher A (1991) Riboflavin kinase and FAD synthetase. In: Müller F (ed) Chemistry and biochemistry of flavoenzymes. CRC press, Boca Raton, FL, pp 349–370Google Scholar
  3. 3.
    Ghisla S, Massey V (1986) New flavins for old: artificial flavins as active site probes of flavoproteins. Biochem J 239:1–12PubMedCentralPubMedGoogle Scholar
  4. 4.
    Massey V, Hemmerich P (1980) Active-site probes of flavoproteins. Biochem Soc Trans 8:246–257PubMedGoogle Scholar
  5. 5.
    Eirich LD, Vogels GD, Wolfe RS (1978) Proposed structure for coenzyme F420 from Methanobacterium. Biochemistry 17:4583–4593PubMedCrossRefGoogle Scholar
  6. 6.
    Eirich LD, Vogels GD, Wolfe RS (1979) Distribution of coenzyme F420 and properties of its hydrolytic fragments. J Bacteriol 140:20–27PubMedCentralPubMedGoogle Scholar
  7. 7.
    Bardos TJ (1974) Antimetabolites: molecular design and mode of action. Top Curr Chem 52:63–98PubMedGoogle Scholar
  8. 8.
    Mack M, Grill S (2006) Riboflavin analogs and inhibitors of riboflavin biosynthesis. Appl Microbiol Biotechnol 71:265–275PubMedCrossRefGoogle Scholar
  9. 9.
    French GL (2010) The continuing crisis in antibiotic resistance. Int J Antimicrob Agents 36(Suppl 3):S3–S7PubMedCrossRefGoogle Scholar
  10. 10.
    Fischer M, Bacher A (2005) Biosynthesis of flavocoenzymes. Nat Prod Rep 22:324–350PubMedCrossRefGoogle Scholar
  11. 11.
    Perkins J, Pero J (2002) Biosynthesis of riboflavin, biotin, folic acid, and cobalamin. In: Sonenshein A, Hoch J, Losick R (eds) Bacillus subtilis and its closest relatives: from genes to cells. ASM Press, Washington DC, pp 271–286Google Scholar
  12. 12.
    Perkins JB, Pero JG, Sloma A (1990) Riboflavin overproducing strains of Bacillus subtilis. European Patent Application 0 405 730 A1Google Scholar
  13. 13.
    Nudler E, Mironov AS (2004) The riboswitch control of bacterial metabolism. Trends Biochem Sci 29:11–17PubMedCrossRefGoogle Scholar
  14. 14.
    Winkler WC, Breaker RR (2005) Regulation of bacterial gene expression by riboswitches. Annu Rev Microbiol 59:487–517PubMedCrossRefGoogle Scholar
  15. 15.
    Abbas CA, Sibirny AA (2011) Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev 75:321–360PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    García Angulo VA, Bonomi HR, Posadas DM, Serer MI, Torres AG, Zorreguieta Á, Goldbaum FA(2013) Identification and characterization of RibN, a novel family of riboflavin transporters from Rhizobium leguminosarum and other proteobacteria. J Bacteriol 195(20):4611–4619Google Scholar
  17. 17.
    Vogl C, Grill S, Schilling O, Stulke J, Mack M, Stolz J (2007) Characterization of riboflavin (vitamin B2) transport proteins from Bacillus subtilis and Corynebacterium glutamicum. J Bacteriol 189:7367–7375PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Burgess CM, Slotboom DJ, Geertsma ER, Duurkens RH, Poolman B, van Sinderen D (2006) The riboflavin transporter RibU in Lactococcus lactis: molecular characterization of gene expression and the transport mechanism. J Bacteriol 188:2752–2760PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Duurkens RH, Tol MB, Geertsma ER, Permentier HP, Slotboom DJ (2007) Flavin binding to the high affinity riboflavin transporter RibU. J Biol Chem 282:10380–10386PubMedCrossRefGoogle Scholar
  20. 20.
    Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS (2002) Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucleic Acids Res 30:3141–3151PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Eitinger T, Rodionov DA, Grote M, Schneider E (2011) Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol Rev 35:3–67PubMedCrossRefGoogle Scholar
  22. 22.
    ter Beek J, Duurkens RH, Erkens GB, Slotboom DJ (2011) Quaternary structure and functional unit of energy coupling factor (ECF)-type transporters. J Biol Chem 286:5471–5475PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Hemberger S, Pedrolli DB, Stolz J, Vogl C, Lehmann M, Mack M (2011) RibM from Streptomyces davawensis is a riboflavin/roseoflavin transporter and may be useful for the optimization of riboflavin production strains. BMC Biotechnol 11:119–129PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Reihl P, Stolz J (2005) The monocarboxylate transporter homolog Mch5p catalyzes riboflavin (vitamin B2) uptake in Saccharomyces cerevisiae. J Biol Chem 280:39809–39817PubMedCrossRefGoogle Scholar
  25. 25.
    Yao Y, Yonezawa A, Yoshimatsu H, Masuda S, Katsura T, Inui K (2010) Identification and comparative functional characterization of a new human riboflavin transporter hRFT3 expressed in the brain. J Nutr 140:1220–1226PubMedCrossRefGoogle Scholar
  26. 26.
    Yonezawa A, Masuda S, Katsura T, Inui K (2008) Identification and functional characterization of a novel human and rat riboflavin transporter, RFT1. Am J Physiol Cell Physiol 295:C632–C641PubMedCrossRefGoogle Scholar
  27. 27.
    Macheroux P, Kappes B, Ealick SE (2011) Flavogenomics—a genomic and structural view of flavin-dependent proteins. FEBS J 278:2625–2634PubMedCrossRefGoogle Scholar
  28. 28.
    Langer S, Hashimoto M, Hobl B, Mathes T, Mack M (2013) Flavoproteins are potential targets for the antibiotic roseoflavin in Escherichia coli. J Bacteriol 195(18):4037–4045PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, Mori H (2005) Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 12:291–299PubMedCrossRefGoogle Scholar
  30. 30.
    Mathes T, Vogl C, Stolz J, Hegemann P (2009) In vivo generation of flavoproteins with modified cofactors. J Mol Biol 385:1511–1518PubMedCrossRefGoogle Scholar
  31. 31.
    Cowden WB, Butcher GA, Hunt NH, Clark IA, Yoneda F (1987) Antimalarial activity of a riboflavin analog against Plasmodium vinckei in vivo and Plasmodium falciparum in vitro. Am J Trop Med Hyg 37:495–500PubMedGoogle Scholar
  32. 32.
    Becker K, Christopherson RI, Cowden WB, Hunt NH, Schirmer RH (1990) Flavin analogs with antimalarial activity as glutathione reductase inhibitors. Biochem Pharmacol 39:59–65PubMedCrossRefGoogle Scholar
  33. 33.
    DiMarco AA, Bobik TA, Wolfe RS (1990) Unusual coenzymes of methanogenesis. Annu Rev Biochem 59:355–394PubMedCrossRefGoogle Scholar
  34. 34.
    White RH (2001) Biosynthesis of the methanogenic cofactors. Vitam Horm 61:299–337PubMedCrossRefGoogle Scholar
  35. 35.
    Kuo MS, Yurek DA, Coats JH, Li GP (1989) Isolation and identification of 7,8-didemethyl-8-hydroxy-5-deazariboflavin, an unusual cosynthetic factor in streptomycetes, from Streptomyces lincolnensis. J Antibiot (Tokyo) 42:475–478CrossRefGoogle Scholar
  36. 36.
    Coats JH, Li GP, Kuo MS, Yurek DA (1989) Discovery, production, and biological assay of an unusual flavenoid cofactor involved in lincomycin biosynthesis. J Antibiot (Tokyo) 42:472–474CrossRefGoogle Scholar
  37. 37.
    Mao Y, Varoglu M, Sherman DH (1999) Molecular characterization and analysis of the biosynthetic gene cluster for the antitumor antibiotic mitomycin C from Streptomyces lavendulae NRRL 2564. Chem Biol 6:251–263PubMedCrossRefGoogle Scholar
  38. 38.
    Daniels L, Bakhiet N, Harmon K (1985) Widespread distribution of a 5-deazaflavin cofactor in actinomycetes and related bacteria. Syst Appl Microbiol 6:12–17CrossRefGoogle Scholar
  39. 39.
    Purwantini E, Gillis TP, Daniels L (1997) Presence of F420-dependent glucose-6-phosphate dehydrogenase in Mycobacterium and Nocardia species, but absence from Streptomyces and Corynebacterium species and methanogenic archaea. FEMS Microbiol Lett 146:129–134PubMedCrossRefGoogle Scholar
  40. 40.
    Stover CK, Warrener P, VanDevanter DR, Sherman DR, Arain TM, Langhorne MH, Anderson SW, Towell JA, Yuan Y, McMurray DN, Kreiswirth BN, Barry CE, Baker WR (2000) A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405:962–966PubMedCrossRefGoogle Scholar
  41. 41.
    Tachibana S, Murakami T (1975) The isolation and some properties of new flavins (“schizoflavin”) formed by Schizophyllum commune. J Nutr Sci Vitaminol (Tokyo) 21:61–63CrossRefGoogle Scholar
  42. 42.
    Kisker C, Schindelin H, Rees DC (1997) Molybdenum-cofactor-containing enzymes: structure and mechanism. Annu Rev Biochem 66:233–267PubMedCrossRefGoogle Scholar
  43. 43.
    Leimkuhler S, Wuebbens MM, Rajagopalan KV (2011) The history of the discovery of the molybdenum cofactor and novel aspects of its biosynthesis in bacteria. Coord Chem Rev 255:1129–1144PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Mayhew SG, Whitfield CD, Ghisla S, Jorns MS (1974) Identification and properties of new flavins in electron-transferring flavoprotein from Peptostreptococcus elsdenii and pig-liver glycolate oxidase. Eur J Biochem 44:579–591PubMedCrossRefGoogle Scholar
  45. 45.
    Ghisla S, Mayhew SG (1973) Identification and structure of a novel flavin prosthetic group associated with reduced nicotinamide adenine dinucleotide dehydrogenase from Peptostreptococcus elsdenii. J Biol Chem 248:6568–6570PubMedGoogle Scholar
  46. 46.
    Ghisla S, Mayhew SG (1976) Identification and properties of 8-hydroxyflavin–adenine dinucleotide in electron-transferring flavoprotein from Peptostreptococcus elsdenii. Eur J Biochem 63:373–390PubMedCrossRefGoogle Scholar
  47. 47.
    Matsui K (1965) Nekoflavin, a new flavin compound, in the choroid of cat’s eye. J Biochem 57:201–206PubMedGoogle Scholar
  48. 48.
    Matsui K, Kasai S (1996) Identification of nekoflavin as 7 alpha-hydroxyriboflavin. J Biochem 119:441–447PubMedCrossRefGoogle Scholar
  49. 49.
    Ohkawa H, Ohishi N, Yagi K (1983) New metabolites of riboflavin appear in human urine. J Biol Chem 258:5623–5628PubMedGoogle Scholar
  50. 50.
    Ohkawa H, Ohishi N, Yagi K (1983) New metabolites of riboflavin appeared in rat urine. Biochem Int 6:239–247PubMedGoogle Scholar
  51. 51.
    West DW, Owen EC (1969) The urinary excretion of metabolites of riboflavine by man. Br J Nutr 23:889–898PubMedCrossRefGoogle Scholar
  52. 52.
    Susin S, Abian J, Sanchez-Baeza F, Peleato ML, Abadia A, Gelpi E, Abadia J (1993) Riboflavin 3′- and 5′-sulfate, two novel flavins accumulating in the roots of iron-deficient sugar beet (Beta vulgaris). J Biol Chem 268:20958–20965PubMedGoogle Scholar
  53. 53.
    Otani S, Takatsu M, Nakano M, Kasai S, Miura R (1974) Letter: roseoflavin, a new antimicrobial pigment from Streptomyces. J Antibiot (Tokyo) 27:88–89CrossRefGoogle Scholar
  54. 54.
    Grill S, Yamaguchi H, Wagner H, Zwahlen L, Kusch U, Mack M (2007) Identification and characterization of two Streptomyces davawensis riboflavin biosynthesis gene clusters. Arch Microbiol 188:377–387PubMedCrossRefGoogle Scholar
  55. 55.
    Mansjo M, Johansson J (2011) The riboflavin analog roseoflavin targets an FMN-riboswitch and blocks Listeria monocytogenes growth, but also stimulates virulence gene-expression and infection. RNA Biol 8:674–680PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Jankowitsch F, Kuhm C, Kellner R, Kalinowski J, Pelzer S, Macheroux P, Mack M (2011) A novel N, N-8-amino-8-demethyl-D-riboflavin dimethyltransferase (RosA) catalyzing the two terminal steps of roseoflavin biosynthesis in Streptomyces davawensis. J Biol Chem 286:38275–38285PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Jankowitsch F, Schwarz J, Ruckert C, Gust B, Szczepanowski R, Blom J, Pelzer S, Kalinowski J, Mack M (2012) Genome sequence of the bacterium Streptomyces davawensis JCM 4913 and heterologous production of the unique antibiotic roseoflavin. J Bacteriol 194:6818–6827PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Otani S, Matsui K, Kasai S (1997) Chemistry and biochemistry of 8-aminoflavins. Osaka City Med J 43:107–137PubMedGoogle Scholar
  59. 59.
    Kasai S, Kubo Y, Yamanaka S, Hirota T, Sato H, Tsuzukida Y, Matusi K (1978) Anti-riboflavin activity of 8N-alkyl analogues of roseoflavin in some Gram-positive bacteria. J Nutr Sci Vitaminol (Tokyo) 24:339–350CrossRefGoogle Scholar
  60. 60.
    Matsui K, Kasai S (1976) Photolysis products of roseoflavin. In: Singer T (ed) Flavins and flavoproteins. Proc. Int. Symp. 5th, 1975. Elsevier, Amsterdam, pp 328–333Google Scholar
  61. 61.
    Kasai S, Yamanaka S, Wang SC, Matsui K (1979) Anti-riboflavin activity of 8-O-alkyl derivatives of riboflavin in some Gram-positive bacteria. J Nutr Sci Vitaminol (Tokyo) 25:289–298CrossRefGoogle Scholar
  62. 62.
    Juri N, Kubo Y, Kasai S, Otani S, Kusunose M, Matsui K (1987) Formation of roseoflavin from 8-amino- and 8-methylamino-8-demethyl-D-riboflavin. J Biochem (Tokyo) 101:705–711CrossRefGoogle Scholar
  63. 63.
    Matsui K, Juri N, Kubo Y, Kasai S (1979) Formation of roseoflavin from guanine through riboflavin. J Biochem (Tokyo) 86:167–175Google Scholar
  64. 64.
    Chen H, Yamase H, Murakami K, Chang CW, Zhao L, Zhao Z, Liu HW (2002) Expression, purification, and characterization of two N, N-dimethyltransferases, tylM1 and desVI, involved in the biosynthesis of mycaminose and desosamine. Biochemistry 41:9165–9183PubMedCrossRefGoogle Scholar
  65. 65.
    Cooke G, Legrand YM, Rotello VM (2004) Model systems for flavoenzyme activity: an electrochemically tuneable model of roseoflavin. Chem Commun 1088–1089Google Scholar
  66. 66.
    Hasford J, Rizzo C (1998) Linear free energy substituent effect on flavin redox chemistry. J Am Chem Soc 120:2251–2255CrossRefGoogle Scholar
  67. 67.
    Pedrolli DB, Nakanishi S, Barile M, Mansurova M, Carmona EC, Lux A, Gärtner W, Mack M (2011) The antibiotics roseoflavin and 8-demethyl-8-amino-riboflavin from Streptomyces davawensis are metabolized by human flavokinase and human FAD synthetase. Biochem Pharmacol 82:1853–1859PubMedCrossRefGoogle Scholar
  68. 68.
    Grill S, Busenbender S, Pfeiffer M, Kohler U, Mack M (2008) The bifunctional flavokinase/flavin adenine dinucleotide synthetase from Streptomyces davawensis produces inactive flavin cofactors and is not involved in resistance to the antibiotic roseoflavin. J Bacteriol 190:1546–1553PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Yorita K, Misaki H, Palfey BA, Massey V (2000) On the interpretation of quantitative structure-function activity relationship data for lactate oxidase. Proc Natl Acad Sci U S A 97:2480–2485PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Walsh C, Fisher J, Spencer R, Graham DW, Ashton WT, Brown JE, Brown RD, Rogers EF (1978) Chemical and enzymatic properties of riboflavin analogues. Biochemistry 17:1942–1951PubMedCrossRefGoogle Scholar
  71. 71.
    Shinkai S, Kameoka K, Honda N, Ueda K, Manabe O, Lindsey J (1986) Spectral and reactivity studies of roseoflavin analogs: correlation between reactivity and spectral parameters. Bioorg Chem 14:119–133CrossRefGoogle Scholar
  72. 72.
    Otani S, Kasai S, Matsui K (1980) Isolation, chemical synthesis, and properties of roseoflavin. Methods Enzymol 66:235–241PubMedCrossRefGoogle Scholar
  73. 73.
    Nakanishi M, Yatome C, Ishida N, Kitade Y (2001) Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase. J Biol Chem 276:46394–46399PubMedCrossRefGoogle Scholar
  74. 74.
    Langer S, Nakanishi S, Mathes T, Knaus T, Binter A, Macheroux P, Mase T, Miyakawa T, Tanokura M, Mack M (2013) The flavoenzyme azobenzene reductase AzoR from Escherichia coli binds roseoflavin mononucleotide (RoFMN) with high affinity and is less active in its RoFMN form. Biochemistry 52:4288–4295PubMedCrossRefGoogle Scholar
  75. 75.
    Ito K, Nakanishi M, Lee WC, Sasaki H, Zenno S, Saigo K, Kitade Y, Tanokura M (2006) Three-dimensional structure of AzoR from Escherichia coli. An oxidereductase conserved in microorganisms. J Biol Chem 281:20567–20576PubMedCrossRefGoogle Scholar
  76. 76.
    Caldwell ST, Farrugia LJ, Hewage SG, Kryvokhyzha N, Rotello VM, Cooke G (2009) Model systems for flavoenzyme activity: an investigation of the role functionality attached to the C(7) position of the flavin unit has on redox and molecular recognition properties. Chem Commun 1350–1352Google Scholar
  77. 77.
    Reddick JJ, Saha S, Lee J, Melnick JS, Perkins J, Begley TP (2001) The mechanism of action of bacimethrin, a naturally occurring thiamin antimetabolite. Bioorg Med Chem Lett 11:2245–2248PubMedCrossRefGoogle Scholar
  78. 78.
    Fiehe K, Arenz A, Drewke C, Hemscheidt T, Williamson RT, Leistner E (2000) Biosynthesis of 4′-O-methylpyridoxine (Ginkgotoxin) from primary precursors. J Nat Prod 63:185–189PubMedCrossRefGoogle Scholar
  79. 79.
    Blount KF, Breaker RR (2006) Riboswitches as antibacterial drug targets. Nat Biotechnol 24:1558–1564PubMedCrossRefGoogle Scholar
  80. 80.
    Ott E, Stolz J, Lehmann M, Mack M (2009) The RFN riboswitch of Bacillus subtilis is a target for the antibiotic roseoflavin produced by Streptomyces davawensis. RNA Biol 6:276–280PubMedCrossRefGoogle Scholar
  81. 81.
    Lee ER, Blount KF, Breaker RR (2009) Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression. RNA Biol 6:187–194PubMedCrossRefGoogle Scholar
  82. 82.
    Pedrolli DB, Matern A, Wang J, Ester M, Siedler K, Breaker R, Mack M (2012) A highly specialized flavin mononucleotide riboswitch responds differently to similar ligands and confers roseoflavin resistance to Streptomyces davawensis. Nucleic Acids Res 40:8662–8673PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Schwarz G, Mendel RR, Ribbe MW (2009) Molybdenum cofactors, enzymes and pathways. Nature 460:839–847PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Danielle Biscaro Pedrolli
    • 1
  • Frank Jankowitsch
    • 1
  • Julia Schwarz
    • 1
  • Simone Langer
    • 1
  • Shinobu Nakanishi
    • 1
  • Matthias Mack
    • 1
    Email author
  1. 1.Institute for Technical Microbiology, Mannheim University of Applied SciencesMannheimGermany

Personalised recommendations