Skip to main content

FTIR Spectroscopy of Flavin-Binding Photoreceptors

  • Protocol
  • First Online:
Book cover Flavins and Flavoproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1146))

Abstract

Light-induced difference Fourier transform infrared (FTIR) spectroscopy is a powerful, sensitive, and informative method to study structure–function relationships in photoreceptive proteins. Strong absorption of water in the IR region is always problematic in this method, but if water content in the sample is controlled during measurements, this method can provide useful information on a single protein-bound water molecule. We established three kinds of sample preparations: hydrated film, redissolved sample, and concentrated solution. Hydrated films were used for the measurements of LOV and BLUF domains, where accurate difference FTIR spectra were obtained in the whole mid-IR region (4,000–800 cm−1). Vibrations of S–H stretch of cysteine, O–H stretch of water, and O–H stretch of tyrosine provide important information on hydrogen bonds in these proteins. Redissolved samples were used for the measurements of (6-4) photolyase, in which enzymatic turnover takes place. From the illumination time-dependence of excess amount of substrate, it is possible to isolate the signal originating from the binding of enzyme to substrate. If proteins are less tolerant to drying, as for example cryptochromes of the DASH type, concentrated solution is used. Detailed methodological aspects in light-induced difference FTIR spectroscopy are reviewed by mainly focusing on our results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kandori H (2006) Retinal binding proteins. In: Dugave C (ed) cis-trans Isomerization in biochemistry. Wiley-VCH, Weinheim, pp 53–75

    Chapter  Google Scholar 

  2. Rockwell NC, Su Y-S, Lagarias JC (2006) Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol 57:837–858

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Imamoto Y, Kataoka M (2007) Structure and photoreaction of photoactive yellow protein, a structural prototype of the PAS domain superfamily. Photochem Photobiol 83:40–49

    Article  PubMed  CAS  Google Scholar 

  4. Kandori H (2010) Hydrogen bonds of protein-bound water molecules in rhodopsins. In: Han K-L, Zhao G-J (eds) Hydrogen bonding and transfer in the excited state. Wiley, Chichester, pp 377–391

    Chapter  Google Scholar 

  5. van der Horst MA, Hellingwerf KJ (2004) Photoreceptor proteins, "star actors of modern times": a review of the functional dynamics in the structure of representative members of six different photoreceptor families. Acc Chem Res 37:13–20

    Article  PubMed  CAS  Google Scholar 

  6. Edmondson D, Ghisla S (1999) Flavoenzyme structure and function. In: Chapman SK, Reid GA (eds) Methods in molecular biology, vol 131, Flavoprotein protocols. Humana Press, Clifton, UK, pp 157–179

    Google Scholar 

  7. Christie JM (2007) Phototropin blue-light receptors. Annu Rev Plant Biol 58:21–45

    Article  PubMed  CAS  Google Scholar 

  8. Kennis JT, Groot M-L (2007) Ultrafast spectroscopy of biological photoreceptors. Curr Opin Struct Biol 17:623–630

    Article  PubMed  CAS  Google Scholar 

  9. Sancar A (2003) Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem Rev 103:2203–2237

    Article  PubMed  CAS  Google Scholar 

  10. Kandori H (2000) Role of internal water molecules in bacteriorhodopsin. Biochim Biophys Acta 1460:177–191

    Article  PubMed  CAS  Google Scholar 

  11. Kötting C, Gerwert K (2005) Proteins in action monitored by time-resolved FTIR spectroscopy. Chemphyschem 6:881–888

    Article  PubMed  CAS  Google Scholar 

  12. Kottke T, Hegemann P, Dick B, Heberle J (2006) The photochemistry of the light-, oxygen-, and voltage-sensitive domains in the algal blue light receptor phot. Biopolymers 82:373–378

    Article  PubMed  CAS  Google Scholar 

  13. Swartz TE, Wenzel PJ, Corchnoy SB, Briggs WR, Bogomolni RA (2002) Vibration spectroscopy reveals light-induced chromophore and protein structural changes in the LOV2 domain of the plant blue-light receptor phototropin 1. Biochemistry 41:7183–7189

    Article  PubMed  CAS  Google Scholar 

  14. Iwata T, Tokutomi S, Kandori H (2002) Photoreaction of the cysteine S–H group in the LOV2 domain of Adiantum phytochrome3. J Am Chem Soc 124:11840–11841

    Article  PubMed  CAS  Google Scholar 

  15. Ataka K, Hegemann P, Heberle J (2003) Vibrational spectroscopy of an algal Phot-LOV1 domain probes the molecular changes associated with blue-light reception. Biophys J 84:466–474

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Iwata T, Nozaki D, Tokutomi S, Kagawa T, Wada M, Kandori H (2003) Light-induced structural changes in the LOV2 domain of Adiantum phytochrome3 studied by low-temperature FTIR and UV–visible spectroscopy. Biochemistry 42:8183–8191

    Article  PubMed  CAS  Google Scholar 

  17. Nozaki D, Iwata T, Ishikawa T, Todo T, Tokutomi S, Kandori H (2004) Role of Gln1029 in the photoactivation processes of the LOV2 domain in Adiantum phytochrome3. Biochemistry 43:8373–8379

    Article  PubMed  CAS  Google Scholar 

  18. Bednarz T, Losi A, Gärtner W, Hegemann P, Heberle J (2004) Functional variations among LOV domains as revealed by FT-IR difference spectroscopy. Photochem Photobiol Sci 3:575–579

    Article  PubMed  CAS  Google Scholar 

  19. Nozaki D, Iwata T, Tokutomi S, Kandori H (2005) Water structural changes in the activation process of the LOV2 domains of Adiantum phytochrome3. J Mol Struct 735–736:259–265

    Article  CAS  Google Scholar 

  20. Sato Y, Iwata T, Tokutomi S, Kandori H (2005) Reactive cysteine is protonated in the triplet excited state of the LOV2 domain in Adiantum phytochrome3. J Am Chem Soc 127:1088–1089

    Article  PubMed  CAS  Google Scholar 

  21. Iwata T, Nozaki D, Tokutomi S, Kandori H (2005) Comparative investigation of the LOV1 and LOV2 domains in Adiantum phytochrome3. Biochemistry 44:7427–7434

    Article  PubMed  CAS  Google Scholar 

  22. Nozaki D, Iwata T, Tokutomi S, Kandori H (2005) Unique temperature dependence in the adduct formation between FMN and cysteine S–H group in the LOV2 domain of Adiantum phytochrome3. Chem Phys Lett 410:59–63

    Article  CAS  Google Scholar 

  23. Iwata T, Nozaki D, Sato Y, Sato K, Nishina Y, Shiga K, Tokutomi S, Kandori H (2006) Identification of the C=O stretching vibrations of FMN and peptide backbone by 13C-labeling of the LOV2 domain of Adiantum phytochrome3. Biochemistry 45:15384–15391

    Article  PubMed  CAS  Google Scholar 

  24. Iwata T, Yamamoto A, Tokutomi S, Kandori H (2007) Hydration and temperature similarly affect light-induced protein structural changes in the chromophoric domain of phototropin. Biochemistry 46:7016–7021

    Article  PubMed  CAS  Google Scholar 

  25. Majerus T, Kottke T, Laan W, Hellingwerf K, Heberle J (2007) Time-resolved FT-IR spectroscopy traces signal relay within the blue-light receptor AppA. Chemphyschem 8:1787–1789

    Article  PubMed  CAS  Google Scholar 

  26. Sato Y, Nabeno M, Iwata T, Tokutomi S, Sakurai M, Kandori H (2007) Heterogeneous environment of the S–H group of Cys966 near the flavin chromophore in the LOV2 domain of Adiantum neochrome1. Biochemistry 46:10258–10265

    Article  PubMed  CAS  Google Scholar 

  27. Yamamoto A, Iwata T, Tokutomi S, Kandori H (2008) Role of Phe1010 in light-induced structural changes of the neo1-LOV2 domain of Adiantum. Biochemistry 47:922–928

    Article  PubMed  CAS  Google Scholar 

  28. Pfeifer A, Majerus T, Zikihara K, Matsuoka D, Tokutomi S, Heberle J, Kottke T (2009) Time-resolved Fourier transform infrared study on photoadduct formation and secondary structural changes within the phototropin LOV domain. Biophys J 96:1462–1470

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Yamamoto A, Iwata T, Sato Y, Matsuoka D, Tokutomi S, Kandori H (2009) Light signal transduction pathway from flavin chromophore to the Jα helix of Arabidopsis phototropin1. Biophys J 96:2771–2778

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Alexandre MTA, van Grondelle R, Hellingwerf KJ, Kennis JTM (2009) Conformational heterogeneity and propagation of structural changes in the LOV2/Jα domain from Avena sativa phototropin 1 as recorded by temperature-dependent FTIR spectroscopy. Biophys J 97:238–247

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Koyama T, Iwata T, Yamamoto A, Sato Y, Matsuoka D, Tokutomi S, Kandori H (2009) Different role of the Jα helix in the light-induced activation of the LOV2 domains in various phototropins. Biochemistry 48:7621–7628

    Article  PubMed  CAS  Google Scholar 

  32. Pfeifer A, Mathes T, Lu Y, Hegemann P, Kottke T (2010) Blue light induces global and localized conformational changes in the kinase domain of full-length phototropin. Biochemistry 49:1024–1032

    Article  PubMed  CAS  Google Scholar 

  33. Alexandre MTA, Purcell EB, van Grondelle R, Robert B, Kennis JTM, Crosson S (2010) Biochemistry 49:4752–4759

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Thöing C, Pfeifer A, Kakorin S, Kottke T (2013) Protonated triplet-excited flavin resolved by step-scan FTIR spectroscopy: implications for photosensory LOV domains. Phys Chem Chem Phys 15:5916–5926

    Article  PubMed  CAS  Google Scholar 

  35. Herman E, Sachse M, Kroth PG, Kottke T (2013) Blue-light-induced unfolding of the Jα helix allows for the dimerization of Aureochrome-LOV from the diatom Phaeodactylum tricornutum. Biochemistry 52:3094–3101

    Article  PubMed  CAS  Google Scholar 

  36. Laan W, van der Horst MA, van Stokkum IH, Hellingwerf KJ (2003) Initial characterization of the primary photochemistry of AppA, a blue-light–using flavin adenine dinucleotide–domain containing transcriptional antirepressor protein from Rhodobacter sphaeroides: a key role for reversible intramolecular proton transfer from the flavin adenine dinucleotide chromophore to a conserved tyrosine? Photochem Photobiol 78:290–297

    Article  PubMed  CAS  Google Scholar 

  37. Masuda S, Hasegawa K, Ishii A, Ono T (2004) Light-induced structural changes in a putative blue-light receptor with a novel FAD binding fold sensor of blue-light using FAD (BLUF); Slr1694 of Synechocystis sp. PCC6803. Biochemistry 43:5304–5313

    Article  PubMed  CAS  Google Scholar 

  38. Hasegawa K, Masuda S, Ono T (2004) Structural intermediate in the photocycle of a BLUF (sensor of blue light using FAD) protein Slr1694 in a cyanobacterium Synechocystis sp. PCC6803. Biochemistry 43:14979–14986

    Article  PubMed  CAS  Google Scholar 

  39. Laan W, Bednarz T, Heberle J, Hellingwerf KJ (2004) Chromophore composition of a heterologously expressed BLUF-domain. Photochem Photobiol Sci 3:1011–1016

    Article  PubMed  CAS  Google Scholar 

  40. Hasegawa K, Masuda S, Ono T (2005) Spectroscopic analysis of the dark relaxation process of a photocycle in a sensor of blue light using FAD (BLUF) protein Slr1694 of the cyanobacterium Synechocystis sp. PCC6803. Plant Cell Physiol 46:136–146

    Article  PubMed  CAS  Google Scholar 

  41. Masuda S, Hasegawa K, Ono T (2005) Light-induced structural changes of apoprotein and chromophore in the sensor of blue light using FAD (BLUF) domain of AppA for a signaling state. Biochemistry 44:1215–1224

    Article  PubMed  CAS  Google Scholar 

  42. Masuda S, Hasegawa K, Ono T (2005) Adenosine diphosphate moiety does not participate in structural changes for the signaling state in the sensor of blue-light using FAD domain of AppA. FEBS Lett 579:4329–4332

    Article  PubMed  CAS  Google Scholar 

  43. Masuda S, Hasegawa K, Ono T (2005) Tryptophan at position 104 is involved in transforming light signal into changes of β-sheet structure for the signaling state in the BLUF domain of AppA. Plant Cell Physiol 46:1894–1901

    Article  PubMed  CAS  Google Scholar 

  44. Hasegawa K, Masuda S, Ono T (2006) Light induced structural changes of a full-length protein and its BLUF domain in YcgF(Blrp), a blue-light sensing protein that uses FAD (BLUF). Biochemistry 45:3785–3793

    Article  PubMed  CAS  Google Scholar 

  45. Okajima K, Fukushima Y, Suzuki H, Kita A, Ochiai Y, Katayama M, Shibata Y, Miki K, Noguchi T, Itoh S, Ikeuchi M (2006) Fate determination of the flavin photoreceptions in the cyanobacterial blue light receptor TePixD (Tll0078). J Mol Biol 363:10–18

    Article  PubMed  CAS  Google Scholar 

  46. Takahashi R, Okajima K, Suzuki H, Nakamura H, Ikeuchi M, Noguchi T (2007) FTIR study on the hydrogen bond structure of a key tyrosine residue in the flavin-binding blue light sensor TePixD from Thermosynechococcus elongatus. Biochemistry 46:6459–6467

    Article  PubMed  CAS  Google Scholar 

  47. Masuda S, Hasegawa K, Ohta H, Ono T (2008) Crucial role in light signal transduction for the conserved Met93 of the BLUF protein PixD/Slr1694. Plant Cell Physiol 49:1600–1606

    Article  PubMed  CAS  Google Scholar 

  48. Suzuki H, Okajima K, Ikeuchi M, Noguchi T (2008) LOV-like flavin-cys adduct formation by introducing a cys residue in the BLUF domain of TePixD. J Am Chem Soc 130:12884–12885

    Article  PubMed  CAS  Google Scholar 

  49. Stelling AL, Ronayne KL, Nappa J, Tonge PJ, Meech SR (2007) Ultrafast structural dynamics in BLUF domains: transient infrared spectroscopy of AppA and its mutants. J Am Chem Soc 129:15556–15564

    Article  PubMed  CAS  Google Scholar 

  50. Ren S, Sawada M, Hasegawa K, Hayakawa Y, Ohta H, Masuda S (2012) A PixD–PapB chimeric protein reveals the function of the BLUF domain C-terminal α-helices for light signal transduction. Plant Cell Physiol 53:1638–1647

    Article  PubMed  CAS  Google Scholar 

  51. Haigney A, Lukacs A, Brust R, Zhao R-K, Towrie M, Greetham GM, Clark I, Illarionov B, Bacher A, Kim R-R, Fischer M, Meech SR, Tonge PJ (2012) Vibrational assignment of the ultrafast infrared spectrum of the photoactivatable flavoprotein AppA. J Phys Chem B 116:10722–10729

    Article  PubMed  CAS  Google Scholar 

  52. Haigney A, Lukacs A, Zhao R-K, Stelling AL, Brust R, Kim R-R, Kondo M, Clark I, Towrie M, Greetham GM, Illarionov B, Bacher A, Römisch-Margl W, Fischer M, Meech SR, Tonge PJ (2011) Ultrafast infrared spectroscopy of an isotope-labeled photoactivatable flavoprotein. Biochemistry 50:1321–1328

    Article  PubMed  CAS  Google Scholar 

  53. Lukacs A, Haigney A, Brust R, Zhao R-K, Stelling AL, Clark IP, Towrie M, Greetham GM, Meech SR, Tonge PJ (2011) Photoexcitation of the blue light using FAD photoreceptor AppA results in ultrafast changes to the protein matrix. J Am Chem Soc 133:16893–16900

    Article  PubMed  CAS  Google Scholar 

  54. Mathes T, Zhu J, van Stokkum IHM, Groot ML, Hegemann P, Kennis JTM (2012) Hydrogen bond switching among flavin and amino acids determines the nature of proton-coupled electron transfer in BLUF photoreceptors. J Phys Chem Lett 3:203–208

    Article  CAS  Google Scholar 

  55. Iwata T, Watanabe A, Iseki M, Watanabe M, Kandori H (2011) Strong donation of the hydrogen bond of tyrosine during photoactivation of the BLUF domain. J Phys Chem Lett 2:1015–1019

    Article  CAS  Google Scholar 

  56. Kottke T, Batschauer A, Ahmad M, Heberle J (2006) Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy. Biochemistry 45:2472–2479

    Article  PubMed  CAS  Google Scholar 

  57. Schleicher E, Hessling B, Illarionova V, Bacher A, Weber S, Richter G, Gerwert K (2005) Light-induced reactions of Escherichia coli DNA photolyase monitored by Fourier transform infrared spectroscopy. FEBS J 272:1855–1866

    Article  PubMed  CAS  Google Scholar 

  58. Iwata T, Zhang Y, Hitomi K, Getzoff ED, Kandori H (2010) Key dynamics of conserved asparagine in a cryptochrome/photolyase family protein by Fourier transform infrared spectroscopy. Biochemistry 49:8882–8891

    Article  PubMed  CAS  Google Scholar 

  59. Immeln D, Pokorny R, Herman E, Moldt J, Batschauer A, Kottke T (2010) Photoreaction of plant and DASH cryptochromes probed by infrared spectroscopy: the neutral radical state of flavoproteins. J Phys Chem B 114:17155–17161

    Article  PubMed  CAS  Google Scholar 

  60. Wijaya IMM, Zhang Y, Iwata T, Yamamoto J, Hitomi K, Iwai S, Getzoff ED, Kandori H (2013) Detection of distinct α-helical rearrangements of cyclobutane pyrimidine dimer photolyase upon substrate binding by Fourier transform infrared spectroscopy. Biochemistry 52:1019–1027

    Article  PubMed  CAS  Google Scholar 

  61. Zhang Y, Iwata T, Yamamoto J, Hitomi K, Iwai S, Todo T, Getzoff ED, Kandori H (2011) FTIR study of light-dependent activation and DNA repair processes of (6-4) photolyase. Biochemistry 50:3591–3598

    Article  PubMed  CAS  Google Scholar 

  62. Zhang Y, Yamamoto J, Yamada D, Iwata T, Hitomi K, Todo T, Getzoff ED, Iwai S, Kandori H (2011) Substrate assignment of the (6-4) photolyase reaction by FTIR spectroscopy. J Phys Chem Lett 2:2774–2777

    Article  CAS  Google Scholar 

  63. Yamada D, Zhang Y, Iwata T, Hitomi K, Getzoff ED, Kandori H (2012) Fourier-transform infrared study of the photoactivation process of Xenopus (6-4) photolyase. Biochemistry 51:5774–5783

    Article  PubMed  CAS  Google Scholar 

  64. Li H, Thomas GJ Jr (1991) Cysteine conformation and sulfhydryl interactions in proteins and viruses. 1. Correlation of the Raman S–H band with hydrogen bonding and intramolecular geometry in model compounds. J Am Chem Soc 113:456–462

    Article  CAS  Google Scholar 

  65. Kandori H, Kinoshita N, Shichida Y, Maeda A, Needleman R, Lanyi JK (1998) Cysteine S–H as a hydrogen-bonding probe in proteins. J Am Chem Soc 120:5828–5829

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Tatsuya Iwata and Yu Zhang for their efforts to establish the FTIR study of flavin-binding photoreceptors. We also thank our many collaborators that contributed to our publications (see "References").

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Kandori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yamada, D., Kandori, H. (2014). FTIR Spectroscopy of Flavin-Binding Photoreceptors. In: Weber, S., Schleicher, E. (eds) Flavins and Flavoproteins. Methods in Molecular Biology, vol 1146. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0452-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0452-5_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0451-8

  • Online ISBN: 978-1-4939-0452-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics