Skip to main content

Solid-State NMR of Flavins and Flavoproteins

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1146))

Abstract

Why apply solid-state NMR (SSNMR) to flavins and flavoproteins? NMR provides information on an atom-specific basis about chemical functionality, structure, proximity to other groups, and dynamics of the system. Thus, it has become indispensable to the study of chemicals, materials, catalysts, and biomolecules. It is no surprise then that NMR has a great deal to offer in the study of flavins and flavoenzymes. In general, their catalytic or electron-transfer activity resides essentially in the flavin, a molecule eminently accessible by NMR. However, the specific reactivity displayed depends on a host of subtle interactions whereby the protein biases and reshapes the flavin’s propensities to activate it for one reaction while suppressing other aspects of this cofactor’s prodigious repertoire (Massey et al., J Biol Chem 244:3999–4006, 1969; Müller, Z Naturforsch 27B:1023–1026, 1972; Joosten and van Berkel, Curr Opin Struct Biol 11:195–202, 2007). Thus, we are fascinated to learn about how the flavin cofactor of one enzyme is, and is not, like the flavin cofactor of another. In what follows, we describe how the capabilities of SSNMR can help and are beginning to bear fruit in this exciting endeavor.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Notes

  1. 1.

    It is anticipated that advanced methods will be undertaken with assistance from experts who will be thoroughly familiar with all material provided here, but the current presentation is intended to provide sufficient background to motivate a collaboration by enabling biochemists to appreciate the opportunities, participate in experimental design, and discuss the results.

  2. 2.

    This relationship between shielding and chemical shift is an approximation that is exact only when the reference signal occurs at a frequency ν ref approaching that of the Larmor frequency, ν 0. When ν ref is far from the Larmor frequency, then δ = 106 × (σ ref − σ obs)/(1 − σ ref) in ppm.

  3. 3.

    The chemical-shift tensor looks like a 3 × 3 matrix whose content depends on what coordinate frame is chosen. However, if we choose a Cartesian frame using the principal axes of the molecule’s shielding as X, Y, and Z axes, the chemical shift tensor will have diagonal elements only and these will be δ 11, δ 22, and δ 33. For further information, see refs. 68, 69.

  4. 4.

    Similar logic applies for aromatic carbons. For the examples of the C(6) and C(9) positions of the flavin xylene ring, coupling of σCH and π* orbitals produces de-shielding tangential to the ring, and coupling of σCC and π* orbitals produces de-shielding radial to the ring, both in the plane of the ring.

  5. 5.

    Müller et al. have popularized the designation of the N(5) and N(1) sites of oxidized flavins as “pyridine-type” nitrogens, consistent with their aromaticity and possession of a non-bonded lone pair in the aromatic plane as in pyridine. The N(3) and N(10) sites, and all four nitrogens of fully reduced flavin have three σ bonds (versus two) and a lone pair roughly perpendicular to the plane of the three bonding partners, as in pyrrole rings so they have been dubbed “pyrrole-type” nitrogens [28]. Because pyrroles are only 5-membered rings and less aromatic, this notation should not be taken too literally [73].

  6. 6.

    For molecules at arbitrary angles, a linear combination of the three principal axes is parallel to the field at one moment, to be replaced with the same linear combination in which the three axes have been permuted in the next. In the end, all three directions will have acquired equal weight regardless of the particular linear combination.

  7. 7.

    The order of the side band is the frequency offset from the isotropic frequency, in units of MAS speed. Higher frequency (down-field) side bands are positive-order bands.

  8. 8.

    For 1H, γ H/(2π) = 42.58 MHz/T, for 19F, γ F/(2π) = 40.05 MHz/T, for 31P, γ P/(2π) = 17.24 MHz/T, for 13C, γ C/(2π) = 10.71 MHz/T, and for 15N, γ N/(2π) = –4.32 MHz/T.

  9. 9.

    Typical dipolar couplings among 13C, 15N, or 31P do not exceed the 13-kHz MAS speeds accessible with routine instrumentation.

  10. 10.

    The ground-state population excess is related by the Boltzmann relation to the energy separating the excited state from the ground state, and the energy separation is proportional to γ. Thus, p n /p 0 = exp[–ΔE/(k B T)], where ΔE = hγB 0/(2π), p n and p 0 are the populations of the excited state and the ground state, ΔE is the energy gap between these two states which for a spin-1/2 nucleus in a magnetic field B 0 is proportional to γ via Planck’s constant h.

  11. 11.

    Due to the several factors that affect the efficiency and maximum amplitude of cross-polarization, the amplitudes of signals observed by this means cannot be related simply to the concentration of corresponding nuclei [71].

References

  1. Massey V, Müller F, Feldberg R, Schuman M, Sullivan PA, Howell LG, Mayhew SG, Matthews RG, Foust GP (1969) The reactivity of flavoproteins with sulfite: possible relevance to the problem of oxygen reactivity. J Biol Chem 244:3999–4006

    PubMed  CAS  Google Scholar 

  2. Müller F (1972) Interaction of flavins with phosphine-derivatives. Z Naturforsch 27B: 1023–1026

    Google Scholar 

  3. Joosten V, van Berkel WJH (2007) Flavoenzymes. Curr Opin Struct Biol 11: 195–202

    CAS  Google Scholar 

  4. Mathes T, van Stokkum IHM, Bonetti C, Hegemann P, Kennis JTM (2011) The hydrogen-bond switch reaction of the Blrb Bluf domain of Rhodobacter sphaeroides. J Phys Chem B 115:7963–7971

    PubMed  CAS  Google Scholar 

  5. Schleicher E, Wenzel R, Ahmad M, Batschauer A, Essen L-O, Hitomi K, Getzoff ED, Bittl R, Weber S, Okafuki A (2010) The electronic state of flavoproteins: investigations with proton electron–nuclear double resonance. Appl Magn Reson 37:339–352

    Google Scholar 

  6. Kodali G, Siddiqui SU, Stanley RJ (2009) Charge redistribution in oxidized and semiquinone E. coli DNA photolyase upon photoexcitation: stark spectroscopy reveals a rationale for the position of Trp382. J Am Chem Soc 131:4795–4807

    PubMed  CAS  Google Scholar 

  7. Rieff B, Bauer S, Mathias G, Tavan P (2011) IR spectra of flavins in solution: DFT/MM description of redox effects. J Phys Chem B 115:2117–2123

    PubMed  CAS  Google Scholar 

  8. Wolf MMN, Zimmermann H, Rolf D, Domratcheva T (2011) Vibrational mode analysis of isotope-labeled electronically excited riboflavin. J Phys Chem B 115:7621–7628

    PubMed  CAS  Google Scholar 

  9. Nishina Y, Sato K, Setoyama C, Tamaoki H, Miura R, Shiga K (2007) Intramolecular and intermolecular perturbation on electronic state of FAD free in solution and bound to flavoproteins: FTIR spectroscopic study by using the C=O stretching vibrations as probes. J Biochem 142:265–272

    PubMed  CAS  Google Scholar 

  10. Blyth AW (1879) The composition of cow’s milk in health and disease. J Chem Soc Perkin Trans 35:530–539

    CAS  Google Scholar 

  11. Warburg O, Christian W (1932) Über das neue Oxydationsferment. Naturwissenschaften 20: 980–981

    CAS  Google Scholar 

  12. Massey V (2000) The chemical and biological versatility of riboflavin. Biochem Soc Trans 28:283–296

    PubMed  CAS  Google Scholar 

  13. Stanley RJ (2001) Advances in flavin and flavoprotein optical spectroscopy. Antioxid Redox Signal 3:847–866

    PubMed  CAS  Google Scholar 

  14. Macheroux P (1999) UV-visible spectroscopy as a tool to study flavoproteins. In: Chapman SK, Reid GA (eds) Flavoprotein protocols. Springer, New York, pp 1–7

    Google Scholar 

  15. Massey V, Hemmerich P (1980) Active-site probes of flavoproteins. Biochem Soc Trans 8:246–257

    PubMed  CAS  Google Scholar 

  16. Anderson RF, Jang M-H, Hille R (2000) Radiolytic studies of trimethylamine dehydrogenase. Spectral deconvolution of the neutral and anionic flavin semiquinone, and determination of rate constants for electron transfer in the one-electron reduced enzyme. J Biol Chem 275:30781–30786

    PubMed  CAS  Google Scholar 

  17. Weber S, Möbius K, Richter G, Kay CWM (2001) The electronic structure of the flavin cofactor in DNA photolyase. J Am Chem Soc 123:3790–3798

    PubMed  CAS  Google Scholar 

  18. Rieff B, Bauer S, Mathias G, Tavan P (2011) DFT/MM description of flavin IR spectra in BLUF domains. J Phys Chem B 115: 11239–11253

    PubMed  CAS  Google Scholar 

  19. Macheroux P, Petersen J, Bornemann S, Lowe DJ, Thorneley RNF (1996) Binding of the oxidized, reduced, and radical flavin species to chorismate synthase. An investigation by spectrophotometry, fluorimetry, and electron paramagnetic resonance and electron nuclear double resonance spectroscopy. Biochemistry 35:1643–1652

    PubMed  CAS  Google Scholar 

  20. Müller F, Vervoort J, Lee J, Horowitz M, Carreira LA (1983) Coherent anti-Stokes Raman spectra of isoalloxazines. J Raman Spectrosc 14:106–117

    Google Scholar 

  21. Losi A, Gärtner W (2011) Old chromophores, new photoactivation paradigms, trendy applications: flavins in blue light-sensing photoreceptors. Photochem Photobiol 87:491–510

    PubMed  CAS  Google Scholar 

  22. Rodgers CT, Hore PJ (2009) Chemical magnetoreception in birds: the radical pair mechanism. Proc Natl Acad Sci U S A 106:353–360

    PubMed Central  PubMed  CAS  Google Scholar 

  23. Beinert W-D, Rüterjans H, Müller F (1985) Nuclear magnetic resonance studies of the old yellow enzyme. 1. 15N NMR of the enzyme recombined with 15N-labeled flavin mononucleotides. Eur J Biochem 152:573–579

    PubMed  CAS  Google Scholar 

  24. Yagi K, Ohishi N, Takai A, Kawano K, Kyogoku Y (1976) 15N nuclear magnetic resonance of flavins. Biochemistry 15:2877–2880

    PubMed  CAS  Google Scholar 

  25. Kawano K, Ohishi N, Suzuki AT, Kyogoku Y, Yagi K (1978) Nitrogen-15 and carbon-13 nuclear magnetic resonance of reduced flavins. Comparative study with oxidized flavins. Biochemistry 17:3854–3859

    PubMed  CAS  Google Scholar 

  26. Tauscher L, Ghisla S, Hemmerich P (1973) Studies in the flavin series. 19. NMR.-study of nitrogen inversion and conformation of 1,5-dihydro-isoalloxaziones (‘reduced flavin’). Helv Chim Acta 56:630–644

    PubMed  CAS  Google Scholar 

  27. Grande HJ, Gast R, van Schagen CG, van Berkel WJH, Müller F (1977) 13C-NMR. study on isoalloxazine and alloxazine derivatives. Helv Chim Acta 60:367–379

    CAS  Google Scholar 

  28. Müller F (1992) Nuclear magnetic resonance studies on flavoproteins. In: Müller F (ed) Chemistry and biochemistry of flavoenzymes. CRC Press, Boca Raton, FL, pp 558–595

    Google Scholar 

  29. Eisenreich W, Kemter K, Bacher A, Mulrooney SB, Williams CH Jr, Müller F (2004) 13C-, 15N- and 31P-NMR studies of oxidized and reduced low molecular mass thioredoxin reductase and some mutant proteins. Eur J Biochem 271:1437–1452

    PubMed  CAS  Google Scholar 

  30. Zhu J, Lau JYC, Wu G (2010) A solid-state 17O NMR study of L-tyrosine in different ionization states: implications for probing tyrosine side chains in proteins. J Phys Chem B 114:11681–11688

    PubMed  CAS  Google Scholar 

  31. Gerothanassis IP (2010) Oxygen-17 NMR spectroscopy: basic principles and applications (part II). Prog Nucl Magn Reson Spectrosc 57:1–110

    PubMed  CAS  Google Scholar 

  32. Wu G (2008) Solid-state 17O NMR studies of organic and biological molecules. Prog Nucl Magn Reson Spectrosc 52:118–169

    CAS  Google Scholar 

  33. Niemz A, Rotello VM (1999) From enzyme to molecular device. Exploring the interdependence of redox and molecular recognition. Acc Chem Res 32:44–52

    CAS  Google Scholar 

  34. Kainosho M, Kyogoku Y (1972) High-resolution proton and phosphorus nuclear magnetic resonance spectra of flavin–adenine dinucleotide and its conformation in aqueous solution. Biochemistry 11:741–752

    PubMed  CAS  Google Scholar 

  35. Koder RL, Lichtenstein BR, Cerda JF, Miller A-F, Dutton PL (2007) A flavin analogue with improved solubility in organic solvents. Tetrahedron Lett 48:5517–5520

    PubMed Central  PubMed  CAS  Google Scholar 

  36. Sedlmaier H, Müller F, Keller PJ, Bacher A (1987) Enzymatic synthesis of riboflavin and FMN specifically labeled with 13C in the xylene ring. Z Naturforsch 42C:425–429

    Google Scholar 

  37. Vervoort J, Müller F, Mayhew SG, van den Berg WAM, Moonen CTW, Bacher A (1986) A comparative carbon-13, nitrogen-15 and phosphorus-31 nuclear magnetic resonance study on the flavodoxins from Clostridium MP, Megasphaera elsdenii and Azotobacter vinelandii. Biochemistry 25:6789–6799

    PubMed  CAS  Google Scholar 

  38. Rüterjans H, Fleischmann G, Knauf M, Löhr F, Blümel M, Lederer F, Mayhew SG, Müller F (1996) NMR studies of flavoproteins. Biochem Soc Trans 24:116–121

    PubMed  Google Scholar 

  39. Van Schagen CG, Müller F (1980) A comparative 13C-NMR study on various reduced flavins. Helv Chim Acta 63:2187–2201

    Google Scholar 

  40. Moonen CTW, Vervoort J, Müller F (1984) Reinvestigation of the structure of oxidized and reduced flavin: carbon-13 and nitrogen-15 nuclear magnetic resonance study. Biochemistry 23:4859–4867

    PubMed  CAS  Google Scholar 

  41. Löhr F, Mayhew SG, Rüterjans H (2000) Detection of scalar couplings across NH⋅⋅⋅OP and OH⋅⋅⋅OP hydrogen bonds in a flavoprotein. J Am Chem Soc 122:9289–9295

    Google Scholar 

  42. Chang F-C, Swenson RP (1999) The midpoint potentials for the oxidized–semiquinone couple for Gly57 mutants of the Clostridium beijerinckii flavodoxin correlate with changes in the hydrogen-bonding interaction with the proton on N(5) of the reduced flavin mononucleotide cofactor as measured by NMR chemical shift temperature dependencies. Biochemistry 38:7168–7176

    PubMed  CAS  Google Scholar 

  43. Bradley LH, Swenson RP (2001) Role of hydrogen bonding interactions to N(3)H of the flavin mononucleotide cofactor in the modulation of the redox potentials of the Clostridium beijerinckii flavodoxin. Biochemistry 40:8686–8695

    PubMed  CAS  Google Scholar 

  44. Nash AI, McNulty R, Shillito ME, Swartz TE, Bogomolni RA, Luecke H, Gardner KH (2011) Structural basis of photosensitivity in a bacterial light-oxygen-voltage/helix-turn-helix (LOV-HTH) DNA-binding protein. Proc Natl Acad Sci U S A 108: 9449–9454

    PubMed Central  PubMed  CAS  Google Scholar 

  45. Yalloway GN, Löhr F, Wienk HL, Mayhew SG, Hrovat A, Knauf MA, Rüterjans H (2003) 1H, 13C and 15N assignment of the hydroquinone form of flavodoxin from Desulfovibrio vulgaris (Hildenborough) and comparison of the chemical shift differences with respect to the oxidized state. J Biomol NMR 25:257–258

    PubMed  CAS  Google Scholar 

  46. Stockman BJ, Richardson TE, Swenson RP (1994) Structural changes caused by site-directed mutagenesis of tyrosine-98 in Desulfovibrio vulgaris flavodoxin delineated by 1H and 15N NMR spectroscopy: implications for redox potential modulation. Biochemistry 33:15298–15308

    PubMed  CAS  Google Scholar 

  47. Peelen S, Vervoort J (1994) Two-dimensional NMR studies of the flavin binding site of Desulfovibrio vulgaris flavodoxin in its three redox states. Arch Biochem Biophys 314: 291–300

    PubMed  CAS  Google Scholar 

  48. Daff S (2012) NO synthase: structures and mechanisms. Nitric Oxide 23:1–11

    Google Scholar 

  49. Birrell JA, King MS, Hirst J (2011) A ternary mechanism for NADH oxidation by positively charged electron acceptors, catalyzed at the flavin site in respiratory complex I. FEBS Lett 585:2318–2322

    PubMed  CAS  Google Scholar 

  50. Araki K, Inaba K (2012) Structure, mechanism, and evolution of Ero1 family enzymes. Antioxid Redox Signal 16:790–799

    PubMed  CAS  Google Scholar 

  51. Hong M, Su Y (2011) Structure and dynamics of cationic membrane peptides and proteins: insights from solid-state NMR. Protein Sci 20:641–655

    PubMed Central  PubMed  CAS  Google Scholar 

  52. McDermott AE, Polenova T (eds) (2010) Solid-state NMR Studies of Biopolymers. John Wiley & Sons, Chichester UK

    Google Scholar 

  53. Paasch S, Brunner E (2010) Trends in solid-state NMR spectroscopy and their relevance for bioanalytics. Anal Bioanal Chem 398:2351–2362

    PubMed  CAS  Google Scholar 

  54. Appleyard RJ, Shuttleworth WA, Evans JNS (1994) Time-resolved solid-state NMR spectroscopy of 5-enolpyruvylshikimate-3-phosphate synthase. Biochemistry 33:6812–6821

    PubMed  CAS  Google Scholar 

  55. Moffat K, Henderson R (1995) Freeze trapping of reaction intermediates. Curr Opin Struct Biol 5:656–663

    PubMed  CAS  Google Scholar 

  56. Krebs C, Edmondson DE, Huynh BH (2002) Demonstration of peroxodiferric intermediate in M-ferritin ferroxidase reaction using rapid freeze-quench Mössbauer, resonance Raman, and XAS spectroscopies. Methods Enzymol 354:436–454

    PubMed  CAS  Google Scholar 

  57. Li Y, Krekel F, Ramilo CA, Amrhein N, Evans JNS (1995) Time-resolved solid-state REDOR NMR studies of UDP N-acetylglucosamine enolpyruvyl transferase. FEBS Lett 377: 208–212

    PubMed  CAS  Google Scholar 

  58. Stoll S, Nejaty-Jahromy Y, Woodward JJ, Ozarowski A, Marletta MA, Britt RD (2010) Nitric oxide synthase stabilizes the tetrahydrobiopterin cofactor radical by controlling its protonation state. J Am Chem Soc 132:11812–11823

    PubMed  CAS  Google Scholar 

  59. Bajaj VS, Mak-Jurkauskas ML, Belenky M, Herzfeld J, Griffin RG (2009) Functional and shunt states of bacteriorhodopsin resolved by 250 GHz dynamic nuclear polarization-enhanced solid-state NMR. Proc Natl Acad Sci U S A 106:9244–9249

    PubMed Central  PubMed  CAS  Google Scholar 

  60. Harbison GS, Herzfeld J, Griffin RG (1983) Solid-state nitrogen-15 nuclear magnetic resonance study of the Schiff base in bacteriorhodopsin. Biochemistry 22:1–5

    PubMed  CAS  Google Scholar 

  61. Lai J, Niks D, Wang Y, Domratcheva T, Barends TRM, Schwarz F, Olsen RA, Elliott DW, Fatmi MQ, Chang CA, Schlichting I, Dunn MF, Mueller LJ (2011) X-ray and NMR crystallography in an enzyme active site: the indoline quinonoid intermediate in tryptophan synthase. J Am Chem Soc 133:4–7

    PubMed  CAS  Google Scholar 

  62. McDermott A, Polenova T (2007) Solid state NMR: new tools for insight into enzyme function. Curr Opin Struct Biol 17:617–622

    PubMed  CAS  Google Scholar 

  63. Cui D, Koder RL Jr, Dutton PL, Miller A-F (2011) 15N solid-state NMR as a probe of flavin H-bonding. J Phys Chem B 115:7788–7798

    PubMed Central  PubMed  CAS  Google Scholar 

  64. Koder RL Jr, Walsh JD, Pometun MS, Dutton PL, Wittebort RJ, Miller A-F (2006) 15N solid-state NMR provides a sensitive probe of oxidized flavin reactive sites. J Am Chem Soc 128:15200–15208

    PubMed  CAS  Google Scholar 

  65. Claridge TDW (2009) High-Resolution NMR Techniques in Organic Chemistry, 2nd edn. Elsevier Science, Oxford

    Google Scholar 

  66. Barich DH, Gorman EM, Zell MT, Munson EJ (2006) 3-Methylglutaric acid as a 13C solid-state NMR standard. Solid State Nucl Magn Reson 30:125–129

    PubMed  CAS  Google Scholar 

  67. Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes BD (1995) 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR 6:135–140

    PubMed  CAS  Google Scholar 

  68. Widdifield CM, Schurko RW (2009) Understanding chemical shielding tensors using group theory, MO analysis, and modern density-functional theory. Concepts Magn Reson Part A 34:91–123

    Google Scholar 

  69. Grant DM (2010) Chemical Shift Tensors. In: McDermott AE, Polenova T (eds) Solid-state NMR studies of biopolymers. John Wiley & Sons, Chichester

    Google Scholar 

  70. Herzfeld J, Berger AE (1980) Sideband intensities in NMR spectra of samples spinning at the magic angle. J Chem Phys 73:6021–6030

    CAS  Google Scholar 

  71. Laws DD, Bitter H-ML, Jerschow A (2002) Solid-state NMR spectroscopic methods in chemistry. Angew Chem Int Ed 41: 3096–3129

    CAS  Google Scholar 

  72. Ramsey NF (1950) Magnetic shielding of nuclei in molecules. Phys Rev 78:699–703

    CAS  Google Scholar 

  73. Solum MS, Altmann KL, Strohmeier M, Berges DA, Zhang Y, Facelli JC, Pugmire RJ, Grant DM (1997) 15N chemical shift principal values in nitrogen heterocycles. J Am Chem Soc 119:9804–9809

    CAS  Google Scholar 

  74. Wei Y, de Dios AC, McDermott AE (1999) Solid-state 15N NMR chemical shift anisotropy of histidines: experimental and theoretical studies of hydrogen bonding. J Am Chem Soc 121:10389–10394

    CAS  Google Scholar 

  75. de Dios AC, Oldfield E (1994) Chemical shifts of carbonyl carbons in peptides and proteins. J Am Chem Soc 116:11485–11488

    Google Scholar 

  76. Hertzfeld J, Gupta SKD, Farrar MR, Harbison GS, McDermott AE, Pelletier SL, Raleigh DP, Smith SO, Winkel C, Lugtenburg J, Griffin RG (1990) Solid-state 13C NMR study of tyrosine protonation in dark-adapted bacteriorhodopsin. Biochemistry 29:5567–5574

    Google Scholar 

  77. deGroot HJM, Harbison GS, Herzfeld J, Griffin RG (1989) Nuclear magnetic resonance study of the Schiff base in bacteriorhodopsin: counterion effects on the 15N shift anisotropy. Biochemistry 28:3346–3353

    CAS  Google Scholar 

  78. de Dios AC (1996) Ab initio calculations of the NMR chemical shift. Prog Nucl Magn Reson Spectrosc 29:229–278

    Google Scholar 

  79. Veeman WS (1981) 13C chemical-shift tensors in organic single-crystals. Phil Trans R Soc A Math Phys Eng Sci 299:629–641

    CAS  Google Scholar 

  80. Eichele K, Wasylishen RE, Maitra K, Nelson JH, Britten JF (1997) Single-crystal 31P and X-ray diffraction study of a molybdenum phosphine complex: (5-methyl-dibenzophosphole) pentacarbonylmolybdenum(0). Inorg Chem 36:3539–3544

    PubMed  CAS  Google Scholar 

  81. Witanowski M, Sicinska W, Biernat S, Webb GA (1991) Solvent effects on nitrogen shieldings in azines. J Magn Reson 91:289–300

    CAS  Google Scholar 

  82. Witanowski M, Stefaniak L, Webb GA (1981) Nitrogen NMR Spectroscopy, vol 11B. Press, New York, Acad

    Google Scholar 

  83. Dixon WT, Schaefer J, Sefcik MD, Stejskal EO, McKay RA (1982) Total suppression of sidebands in CPMAS C-13 NMR. J Magn Reson 49:341–345

    CAS  Google Scholar 

  84. Eichele K, Wasylishen RE (2012) HBA: Herzfeld-Berger analysis program, Version 1.7.3. http://anorganik.uni-tuebingen.de/klaus/soft/index.php?p=hba/hba

  85. Mason J (1996) Nitrogen NMR. In: Grant DM, Harris RK (eds) Encyclopedia of NMR. Wiley, Sussex UK, pp 3222–3251

    Google Scholar 

  86. Antzutkin ON (1999) Sideband manipulation in magic-angle-spinning nuclear magnetic resonance. Prog Nucl Magn Reson Spectrosc 35:203–266

    CAS  Google Scholar 

  87. Antzutkin ON, Lee YK, Levitt MH (1998) 13C and 15N-chemical shift anisotropy of ampicillin and penicillin-V studied by 2D-PASS and CP/MAS NMR. J Magn Reson 135:144–155

    PubMed  CAS  Google Scholar 

  88. Alderman DW, McGeorge G, Hu JZ, Pugmire RJ, Grant DM (1998) A sensitive, high resolution magic angle turning experiment for measuring chemical shift tensor principal values. Mol Phys 95:1113–1126

    CAS  Google Scholar 

  89. Andrew ER, Bradbury A, Eades RG (1958) Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 182:1659

    CAS  Google Scholar 

  90. Lowe IJ (1959) Free induction decays of rotating solids. Phys Rev Lett 2:285–287

    CAS  Google Scholar 

  91. Pines A, Gibby MG, Waugh JS (1973) Proton-enhanced NMR of dilute spins in solids. J Chem Phys 59:569–590

    CAS  Google Scholar 

  92. Bennett AE, Rienstra CM, Auger M, Lakshmi KV, Griffin RG (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103: 6951–6958

    CAS  Google Scholar 

  93. Comellas G, Lopez JJ, Nieuwkoop AJ, Lemkau LR, Rienstra CM (2011) Straightforward, effective calibration of SPINAL-64 decoupling results in the enhancement of sensitivity and resolution of biomolecular solid-state NMR. J Magn Reson 209:131–135

    PubMed Central  PubMed  CAS  Google Scholar 

  94. Nelson BN, Schieber LJ, Barich DH, Lubach JW, Offerdahl TJ, Lewis DH, Heinrich JP, Munson EJ (2006) Multiple-sample probe for solid-state NMR studies of pharmaceuticals. Solid State Nucl Magn Reson 29:204–213

    PubMed  CAS  Google Scholar 

  95. Hartmann SR, Hahn EL (1962) Nuclear double resonance in the rotating frame. Phys Rev 128:2042–2053

    CAS  Google Scholar 

  96. Morris GA, Freeman R (1979) Enhancement of nuclear magnetic resonance signals by polarization transfer. J Am Chem Soc 101: 760–762

    CAS  Google Scholar 

  97. Helmus JJ, Surewicz K, Surewicz WK, Jaroniec CP (2010) Conformational flexibility of Y145Stop human prion protein amyloid fibrils probed by solid-state nuclear magnetic resonance spectroscopy. J Am Chem Soc 132:2393–2403

    PubMed Central  PubMed  CAS  Google Scholar 

  98. Gullion T, Schaefer J (1989) Rotational-echo double-resonance NMR. J Magn Reson 81:196–200

    CAS  Google Scholar 

  99. Kovacs FA, Fowler DJ, Gallagher GJ, Thompson LK (2007) A practical guide for solid-state NMR distance measurements in proteins. Concepts Magn Reson Part A 30:21–39

    Google Scholar 

  100. Römisch W, Eisenreich W, Richter G, Bacher A (2002) Rapid one-pot synthesis of riboflavin isotopomers. J Org Chem 67:8890–8894

    PubMed  Google Scholar 

  101. Kim HW, Perez JA, Ferguson SJ, Campbell ID (1990) The specific incorporation of labeled aromatic amino acids into proteins through growth of bacteria in the presence of glyphosate. Application to fluorotryptophan labeling to the H+ATPase of Escherichia coli and NMR studies. FEBS Lett 272:34–36

    PubMed  CAS  Google Scholar 

  102. Tugarinov V, Kanelis V, Kay LE (2006) Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat Protoc 1:749–754

    PubMed  CAS  Google Scholar 

  103. Anderson LL, Marshall GR, Crocker E, Smith SO, Baranski TJ (2005) Motion of carboxyl terminus of Gα is restricted upon G protein activation. A solution NMR study using semisynthetic Gα subunits. J Biol Chem 280: 31019–31026

    PubMed Central  PubMed  CAS  Google Scholar 

  104. Muchmore DC, McIntosh LP, Russell CB, Anderson DE, Dahlquist FW (1989) Expression and 15N labeling of proteins for proton and 15N nuclear magnetic resonance. Methods Enzymol 177:44–73

    PubMed  CAS  Google Scholar 

  105. Jaroniec CP, Tounge BA, Hertzfeld J, Griffin RG (2001) Frequency selective heteronuclear dipolar recoupling in rotating solids: accurate 13C–15N distance measurements in uniformly 13C,15N-labeled peptides. J Am Chem Soc 123:3507–3519

    PubMed  CAS  Google Scholar 

  106. Raleigh DP, Levitt MH, Griffin RG (1988) Rotational resonance in solid state NMR. Chem Phys Lett 146:71–76

    CAS  Google Scholar 

  107. Lennon BW, Williams CH Jr, Ludwig ML (1999) Crystal structure of reduced thioredoxin reductase from Escherichia coli: structural flexibility in the isoalloxazine ring of the flavin adenine dinucleotide cofactor. Protein Sci 8:2366–2379

    PubMed Central  PubMed  CAS  Google Scholar 

  108. Gatti DL, Palfey BA, Lah MS, Entsch B, Massey V, Ballou DP, Ludwig ML (1994) The mobile flavin of 4-OH benzoate hydroxylase. Science 266:110–114

    PubMed  CAS  Google Scholar 

  109. Schreuder HA, Mattevi A, Obmolova G, Kalk KH, Hol WGJ, van der Bolt FJT, van Berkel WJH (1994) Crystal structures of wild-type p-hydroxybenzoate hydroxylase complexed with 4-aminobenzoate, 2,4-dihydroxybenzoate, and 2-hydroxy-4-aminobenzoate and of the Tyr222Ala mutant complexed with 2-hydroxy-4-aminobenzoate. Evidence for a proton channel and a new binding mode of the flavin ring. Biochemistry 33:10161–10170

    PubMed  CAS  Google Scholar 

  110. Griffin RG (1998) Dipolar recoupling in MAS spectra of biological solids. Nat Struct Mol Biol 5:508–512

    CAS  Google Scholar 

  111. Li Y, Appleyard RJ, Shuttleworth WA, Evans JNS (1994) Time-resolved solid-state REDOR NMR measurements on 5-enolpyruvylshikimate 3-phosphate synthase. J Am Chem Soc 116:10799–10800

    CAS  Google Scholar 

  112. McDermott AE (2004) Structural and dynamic studies of proteins by solid-state NMR spectroscopy: rapid movement forward. Curr Opin Struct Biol 14:554–561

    PubMed  CAS  Google Scholar 

  113. Opella SJ, Marassi FM (2004) Structure determination of membrane proteins by NMR spectroscopy. Chem Rev 104:3587–3606

    PubMed Central  PubMed  CAS  Google Scholar 

  114. Zhang Y, Doherty T, Li J, Lu W, Barinka C, Lubkowski J, Hong M (2010) Resonance assignment and three-dimensional structure determination of a human α-defensin, HNP-1, by solid-state NMR. J Mol Biol 397:408–422

    PubMed Central  PubMed  CAS  Google Scholar 

  115. Li Y, Berthold DA, Frericks HL, Gennis RB, Rienstra CM (2007) Partial 13C and 15N chemical-shift assignments of the disulfide-bond-forming enzyme DsbB by 3D magic-angle spinning NMR spectroscopy. ChemBioChem 8:434–442

    PubMed  CAS  Google Scholar 

  116. Baldus M (2007) ICMRBS founder’s medal 2006: biological solid-state NMR, methods and applications. J Biomol NMR 39:73–86

    PubMed  CAS  Google Scholar 

  117. Sperling LJ, Nieuwkoop AJ, Lipton AS, Berthold DA, Rienstra CM (2010) High resolution NMR spectroscopy of nanocrystalline proteins at ultra-high magnetic field. J Biomol NMR 46:149–155

    PubMed Central  PubMed  CAS  Google Scholar 

  118. Walsh JD, Miller A-F (2003) NMR shieldings and electron correlation reveal remarkable behavior on the part of the flavin N5 reactive center. J Phys Chem B 107:854–863

    CAS  Google Scholar 

  119. Mayhew SG (1999) The effects of pH and semiquinone formation on the oxidation–reduction potentials of flavin mononucleotide. A reappraisal. Eur J Biochem 265:698–702

    PubMed  CAS  Google Scholar 

  120. Curley GP, Carr MC, Mayhew SG, Voordouw G (1991) Redox and flavin-binding properties of recombinant flavodoxin from Desulfovibrio vulgaris (Hildenborough). Eur J Biochem 202:1091–1100

    PubMed  CAS  Google Scholar 

  121. Müller F, Massey V (1969) Flavin-sulfite complexes and their structures. J Biol Chem 244:4007–4016

    PubMed  Google Scholar 

  122. Hu K-N, Yu H, Swager TM, Griffin RG (2004) Dynamic nuclear polarization with biradicals. J Am Chem Soc 126: 10844–10845

    PubMed  CAS  Google Scholar 

  123. Maly T, Debelouchina GT, Bajaj VS, Hu K-N, Joo C-G, Mak-Jurkauskas ML, Sirigiri JR, van der Wel PCA, Herzfeld J, Temkin RJ, Griffin RG (2008) Dynamic nuclear polarization at high magnetic fields. J Chem Phys 128:052211

    PubMed Central  PubMed  Google Scholar 

  124. Hore PJ, Broadhurst RW (1993) Photo-CIDNP of biopolymers. Prog Nucl Magn Reson Spectrosc 25:345–402

    CAS  Google Scholar 

  125. van Schagen CG, Müller F, Kaptein R (1982) Photochemically induced dynamic nuclear polarization study on flavin adenine dinucleotide and flavoproteins. Biochemistry 21: 402–407

    PubMed  Google Scholar 

  126. Thamarath SS, Heberle J, Hore JP, Kottke T, Matysik J (2010) Solid-state photo-CIDNP effect observed in phototropin LOV1-C57S by 13C magic-angle spinning NMR spectroscopy. J Am Chem Soc 132:15542–15543

    PubMed  CAS  Google Scholar 

  127. Eisenreich W, Fischer M, Römisch-Margl W, Joshi M, Richter G, Bacher A, Weber S (2009) Tryptophan 13C nuclear-spin polarization generated by intraprotein electron transfer in a LOV2 domain of the blue-light receptor phototropin. Biochem Soc Trans 37:382–386

    PubMed  CAS  Google Scholar 

  128. Maly T, Cui D, Griffin RG, Miller A-F (2012) 1H dynamic nuclear polarization based on an endogenous radical. J Phys Chem B 116: 7055–7065

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I am grateful to the NIH for funding under 1 R01 GM085302-01A1 and to Prof. R. G. Griffin for hospitality at the Francis Bitter Magnet Lab (M.I.T.) during my sabbatical. I also thank S. Pyszczynski and E. Munson for assistance in obtaining spectra of MGA, K. Eichele for generously supplying and supporting his software, and T. Maly for help with Fig. 15. This paper is dedicated to my parents on the occasion of my mother’s 80th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Frances Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Miller, AF. (2014). Solid-State NMR of Flavins and Flavoproteins. In: Weber, S., Schleicher, E. (eds) Flavins and Flavoproteins. Methods in Molecular Biology, vol 1146. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0452-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0452-5_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0451-8

  • Online ISBN: 978-1-4939-0452-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics