Advertisement

Solid-State NMR of Flavins and Flavoproteins

  • Anne-Frances MillerEmail author
Protocol
  • 1.5k Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 1146)

Abstract

Why apply solid-state NMR (SSNMR) to flavins and flavoproteins? NMR provides information on an atom-specific basis about chemical functionality, structure, proximity to other groups, and dynamics of the system. Thus, it has become indispensable to the study of chemicals, materials, catalysts, and biomolecules. It is no surprise then that NMR has a great deal to offer in the study of flavins and flavoenzymes. In general, their catalytic or electron-transfer activity resides essentially in the flavin, a molecule eminently accessible by NMR. However, the specific reactivity displayed depends on a host of subtle interactions whereby the protein biases and reshapes the flavin’s propensities to activate it for one reaction while suppressing other aspects of this cofactor’s prodigious repertoire (Massey et al., J Biol Chem 244:3999–4006, 1969; Müller, Z Naturforsch 27B:1023–1026, 1972; Joosten and van Berkel, Curr Opin Struct Biol 11:195–202, 2007). Thus, we are fascinated to learn about how the flavin cofactor of one enzyme is, and is not, like the flavin cofactor of another. In what follows, we describe how the capabilities of SSNMR can help and are beginning to bear fruit in this exciting endeavor.

Key words

Electronic structure of flavins Solid-state NMR Chemical shift Chemical-shift anisotropy Dipolar coupling Magic-angle spinning Binding motifs 

Notes

Acknowledgements

I am grateful to the NIH for funding under 1 R01 GM085302-01A1 and to Prof. R. G. Griffin for hospitality at the Francis Bitter Magnet Lab (M.I.T.) during my sabbatical. I also thank S. Pyszczynski and E. Munson for assistance in obtaining spectra of MGA, K. Eichele for generously supplying and supporting his software, and T. Maly for help with Fig. 15. This paper is dedicated to my parents on the occasion of my mother’s 80th birthday.

References

  1. 1.
    Massey V, Müller F, Feldberg R, Schuman M, Sullivan PA, Howell LG, Mayhew SG, Matthews RG, Foust GP (1969) The reactivity of flavoproteins with sulfite: possible relevance to the problem of oxygen reactivity. J Biol Chem 244:3999–4006PubMedGoogle Scholar
  2. 2.
    Müller F (1972) Interaction of flavins with phosphine-derivatives. Z Naturforsch 27B: 1023–1026Google Scholar
  3. 3.
    Joosten V, van Berkel WJH (2007) Flavoenzymes. Curr Opin Struct Biol 11: 195–202Google Scholar
  4. 4.
    Mathes T, van Stokkum IHM, Bonetti C, Hegemann P, Kennis JTM (2011) The hydrogen-bond switch reaction of the Blrb Bluf domain of Rhodobacter sphaeroides. J Phys Chem B 115:7963–7971PubMedGoogle Scholar
  5. 5.
    Schleicher E, Wenzel R, Ahmad M, Batschauer A, Essen L-O, Hitomi K, Getzoff ED, Bittl R, Weber S, Okafuki A (2010) The electronic state of flavoproteins: investigations with proton electron–nuclear double resonance. Appl Magn Reson 37:339–352Google Scholar
  6. 6.
    Kodali G, Siddiqui SU, Stanley RJ (2009) Charge redistribution in oxidized and semiquinone E. coli DNA photolyase upon photoexcitation: stark spectroscopy reveals a rationale for the position of Trp382. J Am Chem Soc 131:4795–4807PubMedGoogle Scholar
  7. 7.
    Rieff B, Bauer S, Mathias G, Tavan P (2011) IR spectra of flavins in solution: DFT/MM description of redox effects. J Phys Chem B 115:2117–2123PubMedGoogle Scholar
  8. 8.
    Wolf MMN, Zimmermann H, Rolf D, Domratcheva T (2011) Vibrational mode analysis of isotope-labeled electronically excited riboflavin. J Phys Chem B 115:7621–7628PubMedGoogle Scholar
  9. 9.
    Nishina Y, Sato K, Setoyama C, Tamaoki H, Miura R, Shiga K (2007) Intramolecular and intermolecular perturbation on electronic state of FAD free in solution and bound to flavoproteins: FTIR spectroscopic study by using the C=O stretching vibrations as probes. J Biochem 142:265–272PubMedGoogle Scholar
  10. 10.
    Blyth AW (1879) The composition of cow’s milk in health and disease. J Chem Soc Perkin Trans 35:530–539Google Scholar
  11. 11.
    Warburg O, Christian W (1932) Über das neue Oxydationsferment. Naturwissenschaften 20: 980–981Google Scholar
  12. 12.
    Massey V (2000) The chemical and biological versatility of riboflavin. Biochem Soc Trans 28:283–296PubMedGoogle Scholar
  13. 13.
    Stanley RJ (2001) Advances in flavin and flavoprotein optical spectroscopy. Antioxid Redox Signal 3:847–866PubMedGoogle Scholar
  14. 14.
    Macheroux P (1999) UV-visible spectroscopy as a tool to study flavoproteins. In: Chapman SK, Reid GA (eds) Flavoprotein protocols. Springer, New York, pp 1–7Google Scholar
  15. 15.
    Massey V, Hemmerich P (1980) Active-site probes of flavoproteins. Biochem Soc Trans 8:246–257PubMedGoogle Scholar
  16. 16.
    Anderson RF, Jang M-H, Hille R (2000) Radiolytic studies of trimethylamine dehydrogenase. Spectral deconvolution of the neutral and anionic flavin semiquinone, and determination of rate constants for electron transfer in the one-electron reduced enzyme. J Biol Chem 275:30781–30786PubMedGoogle Scholar
  17. 17.
    Weber S, Möbius K, Richter G, Kay CWM (2001) The electronic structure of the flavin cofactor in DNA photolyase. J Am Chem Soc 123:3790–3798PubMedGoogle Scholar
  18. 18.
    Rieff B, Bauer S, Mathias G, Tavan P (2011) DFT/MM description of flavin IR spectra in BLUF domains. J Phys Chem B 115: 11239–11253PubMedGoogle Scholar
  19. 19.
    Macheroux P, Petersen J, Bornemann S, Lowe DJ, Thorneley RNF (1996) Binding of the oxidized, reduced, and radical flavin species to chorismate synthase. An investigation by spectrophotometry, fluorimetry, and electron paramagnetic resonance and electron nuclear double resonance spectroscopy. Biochemistry 35:1643–1652PubMedGoogle Scholar
  20. 20.
    Müller F, Vervoort J, Lee J, Horowitz M, Carreira LA (1983) Coherent anti-Stokes Raman spectra of isoalloxazines. J Raman Spectrosc 14:106–117Google Scholar
  21. 21.
    Losi A, Gärtner W (2011) Old chromophores, new photoactivation paradigms, trendy applications: flavins in blue light-sensing photoreceptors. Photochem Photobiol 87:491–510PubMedGoogle Scholar
  22. 22.
    Rodgers CT, Hore PJ (2009) Chemical magnetoreception in birds: the radical pair mechanism. Proc Natl Acad Sci U S A 106:353–360PubMedCentralPubMedGoogle Scholar
  23. 23.
    Beinert W-D, Rüterjans H, Müller F (1985) Nuclear magnetic resonance studies of the old yellow enzyme. 1. 15N NMR of the enzyme recombined with 15N-labeled flavin mononucleotides. Eur J Biochem 152:573–579PubMedGoogle Scholar
  24. 24.
    Yagi K, Ohishi N, Takai A, Kawano K, Kyogoku Y (1976) 15N nuclear magnetic resonance of flavins. Biochemistry 15:2877–2880PubMedGoogle Scholar
  25. 25.
    Kawano K, Ohishi N, Suzuki AT, Kyogoku Y, Yagi K (1978) Nitrogen-15 and carbon-13 nuclear magnetic resonance of reduced flavins. Comparative study with oxidized flavins. Biochemistry 17:3854–3859PubMedGoogle Scholar
  26. 26.
    Tauscher L, Ghisla S, Hemmerich P (1973) Studies in the flavin series. 19. NMR.-study of nitrogen inversion and conformation of 1,5-dihydro-isoalloxaziones (‘reduced flavin’). Helv Chim Acta 56:630–644PubMedGoogle Scholar
  27. 27.
    Grande HJ, Gast R, van Schagen CG, van Berkel WJH, Müller F (1977) 13C-NMR. study on isoalloxazine and alloxazine derivatives. Helv Chim Acta 60:367–379Google Scholar
  28. 28.
    Müller F (1992) Nuclear magnetic resonance studies on flavoproteins. In: Müller F (ed) Chemistry and biochemistry of flavoenzymes. CRC Press, Boca Raton, FL, pp 558–595Google Scholar
  29. 29.
    Eisenreich W, Kemter K, Bacher A, Mulrooney SB, Williams CH Jr, Müller F (2004) 13C-, 15N- and 31P-NMR studies of oxidized and reduced low molecular mass thioredoxin reductase and some mutant proteins. Eur J Biochem 271:1437–1452PubMedGoogle Scholar
  30. 30.
    Zhu J, Lau JYC, Wu G (2010) A solid-state 17O NMR study of L-tyrosine in different ionization states: implications for probing tyrosine side chains in proteins. J Phys Chem B 114:11681–11688PubMedGoogle Scholar
  31. 31.
    Gerothanassis IP (2010) Oxygen-17 NMR spectroscopy: basic principles and applications (part II). Prog Nucl Magn Reson Spectrosc 57:1–110PubMedGoogle Scholar
  32. 32.
    Wu G (2008) Solid-state 17O NMR studies of organic and biological molecules. Prog Nucl Magn Reson Spectrosc 52:118–169Google Scholar
  33. 33.
    Niemz A, Rotello VM (1999) From enzyme to molecular device. Exploring the interdependence of redox and molecular recognition. Acc Chem Res 32:44–52Google Scholar
  34. 34.
    Kainosho M, Kyogoku Y (1972) High-resolution proton and phosphorus nuclear magnetic resonance spectra of flavin–adenine dinucleotide and its conformation in aqueous solution. Biochemistry 11:741–752PubMedGoogle Scholar
  35. 35.
    Koder RL, Lichtenstein BR, Cerda JF, Miller A-F, Dutton PL (2007) A flavin analogue with improved solubility in organic solvents. Tetrahedron Lett 48:5517–5520PubMedCentralPubMedGoogle Scholar
  36. 36.
    Sedlmaier H, Müller F, Keller PJ, Bacher A (1987) Enzymatic synthesis of riboflavin and FMN specifically labeled with 13C in the xylene ring. Z Naturforsch 42C:425–429Google Scholar
  37. 37.
    Vervoort J, Müller F, Mayhew SG, van den Berg WAM, Moonen CTW, Bacher A (1986) A comparative carbon-13, nitrogen-15 and phosphorus-31 nuclear magnetic resonance study on the flavodoxins from Clostridium MP, Megasphaera elsdenii and Azotobacter vinelandii. Biochemistry 25:6789–6799PubMedGoogle Scholar
  38. 38.
    Rüterjans H, Fleischmann G, Knauf M, Löhr F, Blümel M, Lederer F, Mayhew SG, Müller F (1996) NMR studies of flavoproteins. Biochem Soc Trans 24:116–121PubMedGoogle Scholar
  39. 39.
    Van Schagen CG, Müller F (1980) A comparative 13C-NMR study on various reduced flavins. Helv Chim Acta 63:2187–2201Google Scholar
  40. 40.
    Moonen CTW, Vervoort J, Müller F (1984) Reinvestigation of the structure of oxidized and reduced flavin: carbon-13 and nitrogen-15 nuclear magnetic resonance study. Biochemistry 23:4859–4867PubMedGoogle Scholar
  41. 41.
    Löhr F, Mayhew SG, Rüterjans H (2000) Detection of scalar couplings across NH⋅⋅⋅OP and OH⋅⋅⋅OP hydrogen bonds in a flavoprotein. J Am Chem Soc 122:9289–9295Google Scholar
  42. 42.
    Chang F-C, Swenson RP (1999) The midpoint potentials for the oxidized–semiquinone couple for Gly57 mutants of the Clostridium beijerinckii flavodoxin correlate with changes in the hydrogen-bonding interaction with the proton on N(5) of the reduced flavin mononucleotide cofactor as measured by NMR chemical shift temperature dependencies. Biochemistry 38:7168–7176PubMedGoogle Scholar
  43. 43.
    Bradley LH, Swenson RP (2001) Role of hydrogen bonding interactions to N(3)H of the flavin mononucleotide cofactor in the modulation of the redox potentials of the Clostridium beijerinckii flavodoxin. Biochemistry 40:8686–8695PubMedGoogle Scholar
  44. 44.
    Nash AI, McNulty R, Shillito ME, Swartz TE, Bogomolni RA, Luecke H, Gardner KH (2011) Structural basis of photosensitivity in a bacterial light-oxygen-voltage/helix-turn-helix (LOV-HTH) DNA-binding protein. Proc Natl Acad Sci U S A 108: 9449–9454PubMedCentralPubMedGoogle Scholar
  45. 45.
    Yalloway GN, Löhr F, Wienk HL, Mayhew SG, Hrovat A, Knauf MA, Rüterjans H (2003) 1H, 13C and 15N assignment of the hydroquinone form of flavodoxin from Desulfovibrio vulgaris (Hildenborough) and comparison of the chemical shift differences with respect to the oxidized state. J Biomol NMR 25:257–258PubMedGoogle Scholar
  46. 46.
    Stockman BJ, Richardson TE, Swenson RP (1994) Structural changes caused by site-directed mutagenesis of tyrosine-98 in Desulfovibrio vulgaris flavodoxin delineated by 1H and 15N NMR spectroscopy: implications for redox potential modulation. Biochemistry 33:15298–15308PubMedGoogle Scholar
  47. 47.
    Peelen S, Vervoort J (1994) Two-dimensional NMR studies of the flavin binding site of Desulfovibrio vulgaris flavodoxin in its three redox states. Arch Biochem Biophys 314: 291–300PubMedGoogle Scholar
  48. 48.
    Daff S (2012) NO synthase: structures and mechanisms. Nitric Oxide 23:1–11Google Scholar
  49. 49.
    Birrell JA, King MS, Hirst J (2011) A ternary mechanism for NADH oxidation by positively charged electron acceptors, catalyzed at the flavin site in respiratory complex I. FEBS Lett 585:2318–2322PubMedGoogle Scholar
  50. 50.
    Araki K, Inaba K (2012) Structure, mechanism, and evolution of Ero1 family enzymes. Antioxid Redox Signal 16:790–799PubMedGoogle Scholar
  51. 51.
    Hong M, Su Y (2011) Structure and dynamics of cationic membrane peptides and proteins: insights from solid-state NMR. Protein Sci 20:641–655PubMedCentralPubMedGoogle Scholar
  52. 52.
    McDermott AE, Polenova T (eds) (2010) Solid-state NMR Studies of Biopolymers. John Wiley & Sons, Chichester UKGoogle Scholar
  53. 53.
    Paasch S, Brunner E (2010) Trends in solid-state NMR spectroscopy and their relevance for bioanalytics. Anal Bioanal Chem 398:2351–2362PubMedGoogle Scholar
  54. 54.
    Appleyard RJ, Shuttleworth WA, Evans JNS (1994) Time-resolved solid-state NMR spectroscopy of 5-enolpyruvylshikimate-3-phosphate synthase. Biochemistry 33:6812–6821PubMedGoogle Scholar
  55. 55.
    Moffat K, Henderson R (1995) Freeze trapping of reaction intermediates. Curr Opin Struct Biol 5:656–663PubMedGoogle Scholar
  56. 56.
    Krebs C, Edmondson DE, Huynh BH (2002) Demonstration of peroxodiferric intermediate in M-ferritin ferroxidase reaction using rapid freeze-quench Mössbauer, resonance Raman, and XAS spectroscopies. Methods Enzymol 354:436–454PubMedGoogle Scholar
  57. 57.
    Li Y, Krekel F, Ramilo CA, Amrhein N, Evans JNS (1995) Time-resolved solid-state REDOR NMR studies of UDP N-acetylglucosamine enolpyruvyl transferase. FEBS Lett 377: 208–212PubMedGoogle Scholar
  58. 58.
    Stoll S, Nejaty-Jahromy Y, Woodward JJ, Ozarowski A, Marletta MA, Britt RD (2010) Nitric oxide synthase stabilizes the tetrahydrobiopterin cofactor radical by controlling its protonation state. J Am Chem Soc 132:11812–11823PubMedGoogle Scholar
  59. 59.
    Bajaj VS, Mak-Jurkauskas ML, Belenky M, Herzfeld J, Griffin RG (2009) Functional and shunt states of bacteriorhodopsin resolved by 250 GHz dynamic nuclear polarization-enhanced solid-state NMR. Proc Natl Acad Sci U S A 106:9244–9249PubMedCentralPubMedGoogle Scholar
  60. 60.
    Harbison GS, Herzfeld J, Griffin RG (1983) Solid-state nitrogen-15 nuclear magnetic resonance study of the Schiff base in bacteriorhodopsin. Biochemistry 22:1–5PubMedGoogle Scholar
  61. 61.
    Lai J, Niks D, Wang Y, Domratcheva T, Barends TRM, Schwarz F, Olsen RA, Elliott DW, Fatmi MQ, Chang CA, Schlichting I, Dunn MF, Mueller LJ (2011) X-ray and NMR crystallography in an enzyme active site: the indoline quinonoid intermediate in tryptophan synthase. J Am Chem Soc 133:4–7PubMedGoogle Scholar
  62. 62.
    McDermott A, Polenova T (2007) Solid state NMR: new tools for insight into enzyme function. Curr Opin Struct Biol 17:617–622PubMedGoogle Scholar
  63. 63.
    Cui D, Koder RL Jr, Dutton PL, Miller A-F (2011) 15N solid-state NMR as a probe of flavin H-bonding. J Phys Chem B 115:7788–7798PubMedCentralPubMedGoogle Scholar
  64. 64.
    Koder RL Jr, Walsh JD, Pometun MS, Dutton PL, Wittebort RJ, Miller A-F (2006) 15N solid-state NMR provides a sensitive probe of oxidized flavin reactive sites. J Am Chem Soc 128:15200–15208PubMedGoogle Scholar
  65. 65.
    Claridge TDW (2009) High-Resolution NMR Techniques in Organic Chemistry, 2nd edn. Elsevier Science, OxfordGoogle Scholar
  66. 66.
    Barich DH, Gorman EM, Zell MT, Munson EJ (2006) 3-Methylglutaric acid as a 13C solid-state NMR standard. Solid State Nucl Magn Reson 30:125–129PubMedGoogle Scholar
  67. 67.
    Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes BD (1995) 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR 6:135–140PubMedGoogle Scholar
  68. 68.
    Widdifield CM, Schurko RW (2009) Understanding chemical shielding tensors using group theory, MO analysis, and modern density-functional theory. Concepts Magn Reson Part A 34:91–123Google Scholar
  69. 69.
    Grant DM (2010) Chemical Shift Tensors. In: McDermott AE, Polenova T (eds) Solid-state NMR studies of biopolymers. John Wiley & Sons, ChichesterGoogle Scholar
  70. 70.
    Herzfeld J, Berger AE (1980) Sideband intensities in NMR spectra of samples spinning at the magic angle. J Chem Phys 73:6021–6030Google Scholar
  71. 71.
    Laws DD, Bitter H-ML, Jerschow A (2002) Solid-state NMR spectroscopic methods in chemistry. Angew Chem Int Ed 41: 3096–3129Google Scholar
  72. 72.
    Ramsey NF (1950) Magnetic shielding of nuclei in molecules. Phys Rev 78:699–703Google Scholar
  73. 73.
    Solum MS, Altmann KL, Strohmeier M, Berges DA, Zhang Y, Facelli JC, Pugmire RJ, Grant DM (1997) 15N chemical shift principal values in nitrogen heterocycles. J Am Chem Soc 119:9804–9809Google Scholar
  74. 74.
    Wei Y, de Dios AC, McDermott AE (1999) Solid-state 15N NMR chemical shift anisotropy of histidines: experimental and theoretical studies of hydrogen bonding. J Am Chem Soc 121:10389–10394Google Scholar
  75. 75.
    de Dios AC, Oldfield E (1994) Chemical shifts of carbonyl carbons in peptides and proteins. J Am Chem Soc 116:11485–11488Google Scholar
  76. 76.
    Hertzfeld J, Gupta SKD, Farrar MR, Harbison GS, McDermott AE, Pelletier SL, Raleigh DP, Smith SO, Winkel C, Lugtenburg J, Griffin RG (1990) Solid-state 13C NMR study of tyrosine protonation in dark-adapted bacteriorhodopsin. Biochemistry 29:5567–5574Google Scholar
  77. 77.
    deGroot HJM, Harbison GS, Herzfeld J, Griffin RG (1989) Nuclear magnetic resonance study of the Schiff base in bacteriorhodopsin: counterion effects on the 15N shift anisotropy. Biochemistry 28:3346–3353Google Scholar
  78. 78.
    de Dios AC (1996) Ab initio calculations of the NMR chemical shift. Prog Nucl Magn Reson Spectrosc 29:229–278Google Scholar
  79. 79.
    Veeman WS (1981) 13C chemical-shift tensors in organic single-crystals. Phil Trans R Soc A Math Phys Eng Sci 299:629–641Google Scholar
  80. 80.
    Eichele K, Wasylishen RE, Maitra K, Nelson JH, Britten JF (1997) Single-crystal 31P and X-ray diffraction study of a molybdenum phosphine complex: (5-methyl-dibenzophosphole) pentacarbonylmolybdenum(0). Inorg Chem 36:3539–3544PubMedGoogle Scholar
  81. 81.
    Witanowski M, Sicinska W, Biernat S, Webb GA (1991) Solvent effects on nitrogen shieldings in azines. J Magn Reson 91:289–300Google Scholar
  82. 82.
    Witanowski M, Stefaniak L, Webb GA (1981) Nitrogen NMR Spectroscopy, vol 11B. Press, New York, AcadGoogle Scholar
  83. 83.
    Dixon WT, Schaefer J, Sefcik MD, Stejskal EO, McKay RA (1982) Total suppression of sidebands in CPMAS C-13 NMR. J Magn Reson 49:341–345Google Scholar
  84. 84.
    Eichele K, Wasylishen RE (2012) HBA: Herzfeld-Berger analysis program, Version 1.7.3. http://anorganik.uni-tuebingen.de/klaus/soft/index.php?p=hba/hba
  85. 85.
    Mason J (1996) Nitrogen NMR. In: Grant DM, Harris RK (eds) Encyclopedia of NMR. Wiley, Sussex UK, pp 3222–3251Google Scholar
  86. 86.
    Antzutkin ON (1999) Sideband manipulation in magic-angle-spinning nuclear magnetic resonance. Prog Nucl Magn Reson Spectrosc 35:203–266Google Scholar
  87. 87.
    Antzutkin ON, Lee YK, Levitt MH (1998) 13C and 15N-chemical shift anisotropy of ampicillin and penicillin-V studied by 2D-PASS and CP/MAS NMR. J Magn Reson 135:144–155PubMedGoogle Scholar
  88. 88.
    Alderman DW, McGeorge G, Hu JZ, Pugmire RJ, Grant DM (1998) A sensitive, high resolution magic angle turning experiment for measuring chemical shift tensor principal values. Mol Phys 95:1113–1126Google Scholar
  89. 89.
    Andrew ER, Bradbury A, Eades RG (1958) Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 182:1659Google Scholar
  90. 90.
    Lowe IJ (1959) Free induction decays of rotating solids. Phys Rev Lett 2:285–287Google Scholar
  91. 91.
    Pines A, Gibby MG, Waugh JS (1973) Proton-enhanced NMR of dilute spins in solids. J Chem Phys 59:569–590Google Scholar
  92. 92.
    Bennett AE, Rienstra CM, Auger M, Lakshmi KV, Griffin RG (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103: 6951–6958Google Scholar
  93. 93.
    Comellas G, Lopez JJ, Nieuwkoop AJ, Lemkau LR, Rienstra CM (2011) Straightforward, effective calibration of SPINAL-64 decoupling results in the enhancement of sensitivity and resolution of biomolecular solid-state NMR. J Magn Reson 209:131–135PubMedCentralPubMedGoogle Scholar
  94. 94.
    Nelson BN, Schieber LJ, Barich DH, Lubach JW, Offerdahl TJ, Lewis DH, Heinrich JP, Munson EJ (2006) Multiple-sample probe for solid-state NMR studies of pharmaceuticals. Solid State Nucl Magn Reson 29:204–213PubMedGoogle Scholar
  95. 95.
    Hartmann SR, Hahn EL (1962) Nuclear double resonance in the rotating frame. Phys Rev 128:2042–2053Google Scholar
  96. 96.
    Morris GA, Freeman R (1979) Enhancement of nuclear magnetic resonance signals by polarization transfer. J Am Chem Soc 101: 760–762Google Scholar
  97. 97.
    Helmus JJ, Surewicz K, Surewicz WK, Jaroniec CP (2010) Conformational flexibility of Y145Stop human prion protein amyloid fibrils probed by solid-state nuclear magnetic resonance spectroscopy. J Am Chem Soc 132:2393–2403PubMedCentralPubMedGoogle Scholar
  98. 98.
    Gullion T, Schaefer J (1989) Rotational-echo double-resonance NMR. J Magn Reson 81:196–200Google Scholar
  99. 99.
    Kovacs FA, Fowler DJ, Gallagher GJ, Thompson LK (2007) A practical guide for solid-state NMR distance measurements in proteins. Concepts Magn Reson Part A 30:21–39Google Scholar
  100. 100.
    Römisch W, Eisenreich W, Richter G, Bacher A (2002) Rapid one-pot synthesis of riboflavin isotopomers. J Org Chem 67:8890–8894PubMedGoogle Scholar
  101. 101.
    Kim HW, Perez JA, Ferguson SJ, Campbell ID (1990) The specific incorporation of labeled aromatic amino acids into proteins through growth of bacteria in the presence of glyphosate. Application to fluorotryptophan labeling to the H+ATPase of Escherichia coli and NMR studies. FEBS Lett 272:34–36PubMedGoogle Scholar
  102. 102.
    Tugarinov V, Kanelis V, Kay LE (2006) Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat Protoc 1:749–754PubMedGoogle Scholar
  103. 103.
    Anderson LL, Marshall GR, Crocker E, Smith SO, Baranski TJ (2005) Motion of carboxyl terminus of Gα is restricted upon G protein activation. A solution NMR study using semisynthetic Gα subunits. J Biol Chem 280: 31019–31026PubMedCentralPubMedGoogle Scholar
  104. 104.
    Muchmore DC, McIntosh LP, Russell CB, Anderson DE, Dahlquist FW (1989) Expression and 15N labeling of proteins for proton and 15N nuclear magnetic resonance. Methods Enzymol 177:44–73PubMedGoogle Scholar
  105. 105.
    Jaroniec CP, Tounge BA, Hertzfeld J, Griffin RG (2001) Frequency selective heteronuclear dipolar recoupling in rotating solids: accurate 13C–15N distance measurements in uniformly 13C,15N-labeled peptides. J Am Chem Soc 123:3507–3519PubMedGoogle Scholar
  106. 106.
    Raleigh DP, Levitt MH, Griffin RG (1988) Rotational resonance in solid state NMR. Chem Phys Lett 146:71–76Google Scholar
  107. 107.
    Lennon BW, Williams CH Jr, Ludwig ML (1999) Crystal structure of reduced thioredoxin reductase from Escherichia coli: structural flexibility in the isoalloxazine ring of the flavin adenine dinucleotide cofactor. Protein Sci 8:2366–2379PubMedCentralPubMedGoogle Scholar
  108. 108.
    Gatti DL, Palfey BA, Lah MS, Entsch B, Massey V, Ballou DP, Ludwig ML (1994) The mobile flavin of 4-OH benzoate hydroxylase. Science 266:110–114PubMedGoogle Scholar
  109. 109.
    Schreuder HA, Mattevi A, Obmolova G, Kalk KH, Hol WGJ, van der Bolt FJT, van Berkel WJH (1994) Crystal structures of wild-type p-hydroxybenzoate hydroxylase complexed with 4-aminobenzoate, 2,4-dihydroxybenzoate, and 2-hydroxy-4-aminobenzoate and of the Tyr222Ala mutant complexed with 2-hydroxy-4-aminobenzoate. Evidence for a proton channel and a new binding mode of the flavin ring. Biochemistry 33:10161–10170PubMedGoogle Scholar
  110. 110.
    Griffin RG (1998) Dipolar recoupling in MAS spectra of biological solids. Nat Struct Mol Biol 5:508–512Google Scholar
  111. 111.
    Li Y, Appleyard RJ, Shuttleworth WA, Evans JNS (1994) Time-resolved solid-state REDOR NMR measurements on 5-enolpyruvylshikimate 3-phosphate synthase. J Am Chem Soc 116:10799–10800Google Scholar
  112. 112.
    McDermott AE (2004) Structural and dynamic studies of proteins by solid-state NMR spectroscopy: rapid movement forward. Curr Opin Struct Biol 14:554–561PubMedGoogle Scholar
  113. 113.
    Opella SJ, Marassi FM (2004) Structure determination of membrane proteins by NMR spectroscopy. Chem Rev 104:3587–3606PubMedCentralPubMedGoogle Scholar
  114. 114.
    Zhang Y, Doherty T, Li J, Lu W, Barinka C, Lubkowski J, Hong M (2010) Resonance assignment and three-dimensional structure determination of a human α-defensin, HNP-1, by solid-state NMR. J Mol Biol 397:408–422PubMedCentralPubMedGoogle Scholar
  115. 115.
    Li Y, Berthold DA, Frericks HL, Gennis RB, Rienstra CM (2007) Partial 13C and 15N chemical-shift assignments of the disulfide-bond-forming enzyme DsbB by 3D magic-angle spinning NMR spectroscopy. ChemBioChem 8:434–442PubMedGoogle Scholar
  116. 116.
    Baldus M (2007) ICMRBS founder’s medal 2006: biological solid-state NMR, methods and applications. J Biomol NMR 39:73–86PubMedGoogle Scholar
  117. 117.
    Sperling LJ, Nieuwkoop AJ, Lipton AS, Berthold DA, Rienstra CM (2010) High resolution NMR spectroscopy of nanocrystalline proteins at ultra-high magnetic field. J Biomol NMR 46:149–155PubMedCentralPubMedGoogle Scholar
  118. 118.
    Walsh JD, Miller A-F (2003) NMR shieldings and electron correlation reveal remarkable behavior on the part of the flavin N5 reactive center. J Phys Chem B 107:854–863Google Scholar
  119. 119.
    Mayhew SG (1999) The effects of pH and semiquinone formation on the oxidation–reduction potentials of flavin mononucleotide. A reappraisal. Eur J Biochem 265:698–702PubMedGoogle Scholar
  120. 120.
    Curley GP, Carr MC, Mayhew SG, Voordouw G (1991) Redox and flavin-binding properties of recombinant flavodoxin from Desulfovibrio vulgaris (Hildenborough). Eur J Biochem 202:1091–1100PubMedGoogle Scholar
  121. 121.
    Müller F, Massey V (1969) Flavin-sulfite complexes and their structures. J Biol Chem 244:4007–4016PubMedGoogle Scholar
  122. 122.
    Hu K-N, Yu H, Swager TM, Griffin RG (2004) Dynamic nuclear polarization with biradicals. J Am Chem Soc 126: 10844–10845PubMedGoogle Scholar
  123. 123.
    Maly T, Debelouchina GT, Bajaj VS, Hu K-N, Joo C-G, Mak-Jurkauskas ML, Sirigiri JR, van der Wel PCA, Herzfeld J, Temkin RJ, Griffin RG (2008) Dynamic nuclear polarization at high magnetic fields. J Chem Phys 128:052211PubMedCentralPubMedGoogle Scholar
  124. 124.
    Hore PJ, Broadhurst RW (1993) Photo-CIDNP of biopolymers. Prog Nucl Magn Reson Spectrosc 25:345–402Google Scholar
  125. 125.
    van Schagen CG, Müller F, Kaptein R (1982) Photochemically induced dynamic nuclear polarization study on flavin adenine dinucleotide and flavoproteins. Biochemistry 21: 402–407PubMedGoogle Scholar
  126. 126.
    Thamarath SS, Heberle J, Hore JP, Kottke T, Matysik J (2010) Solid-state photo-CIDNP effect observed in phototropin LOV1-C57S by 13C magic-angle spinning NMR spectroscopy. J Am Chem Soc 132:15542–15543PubMedGoogle Scholar
  127. 127.
    Eisenreich W, Fischer M, Römisch-Margl W, Joshi M, Richter G, Bacher A, Weber S (2009) Tryptophan 13C nuclear-spin polarization generated by intraprotein electron transfer in a LOV2 domain of the blue-light receptor phototropin. Biochem Soc Trans 37:382–386PubMedGoogle Scholar
  128. 128.
    Maly T, Cui D, Griffin RG, Miller A-F (2012) 1H dynamic nuclear polarization based on an endogenous radical. J Phys Chem B 116: 7055–7065PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of KentuckyLexingtonUSA

Personalised recommendations