Skip to main content

The Control of Recombination in Wheat by Ph1 and Its Use in Breeding

  • Protocol
  • First Online:
Crop Breeding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1145))

Abstract

Two meiotic processes have a major influence on the plant breeding, namely, the independent assortment of chromosomes, and recombination. The major chromosome pairing locus in hexaploid and tetraploid wheat, Ph1, has a significant effect on both these processes. This chapter reviews our current understanding of this locus and how mutants of it can be exploited for breeding purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sears E (1977) An induced mutant with homoeologous pairing in common wheat. Can J Genet Cytol 19:585–593

    Google Scholar 

  2. Zickler D, Kleckner N (1999) Meiotic chromosomes: integrating structures. Annu Rev Genet 33:603–754

    Article  CAS  PubMed  Google Scholar 

  3. Page SL, Hawley RS (2003) Chromosome choreography: the meiotic ballet. Science 301:785–789

    Article  CAS  PubMed  Google Scholar 

  4. Jones GH (1984) The control of chiasma distribution. Symp Soc Exp Biol 38:293–320

    CAS  PubMed  Google Scholar 

  5. Akhunov E, Goodyear A, Geng S, Qi L-L, Echalier B, Gill B, Miftahudin P, Gustafson P, Lazo G, Chao S, Anderson O, Linkiewicz M, Dubcovsky J, Rota M, Sorrells M, Zhang D, Nguyen H, Kalavacharla V, Hossain K, Kianian S, Peng J, Lapitan N, Gonzalez-Hernandez J, Anderson J, Choi D-W, Close T, Dilbirligi M, Gill K, Walker-Simmons K, Steber C, McGuire P, Qualset C, Dvorak J (2003) The organisation and rate of evolution of wheat genomes are correlated with recombination rates along the chromosome arms. Genome Res 13:753–763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Moore G (1995) Cereal genome evolution: pastoral pursuits with ‘Lego’ genomes. Curr Opin Genet Dev 5:717–724

    Article  CAS  PubMed  Google Scholar 

  7. King J, Armstead A, Donnison A, Roberts L, Harper J, Skot K, Elborough K, King I (2007) Comparative analyses between Lolium/Festuca introgression lines and rice reveal the major fraction of functionally annotated gene models are located in recombination poor/very poor regions of the genome. Genetics 177:547–606

    Article  Google Scholar 

  8. Korzun L, Kunzel G (1996) The physical relationship of barley chromosome 5 (1H) to the linkage group of rice chromosome 5 and 10. Mol Gen Genet 252:225–231

    Article  Google Scholar 

  9. Kunzel G, Korzun L, Meister A (2000) Cytogenetically integrated physical restriction length polymorphism maps of the barley genome based on translocation breakpoints. Genetics 154:397–412

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Scherrer B, Isidore E, Klein P, Kim J-S, Bellec A, Chalhoub B, Keller B, Feuillet C (2005) Large intraspecific haplotype variability at the Rph7 locus from rapid and recent divergence in the barley genome. Plant Cell 17:361–374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Fu H, Dooner H (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci U S A 99:9573–9578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Saintenac C, Favre S, Remay C, Choulet F, Ravel C, Paux E, Balfourier F, Feuillet C, Sourdille P (2011) Variation in crossover rate across a 3-MB contig of bread wheat (Triticum aestivum) reveals the presence of a meiotic recombination hotspot. Chromosoma 120:185–198

    Article  CAS  PubMed  Google Scholar 

  13. Materson J (2003) Stomatal size in fossil plants: evidence of polyploidy in majority of Angiosperms. Science 264:421–424

    Article  Google Scholar 

  14. Able J, Langridge P (2006) Wild sex in grasses. Trends Plant Sci 11:261–267

    Article  CAS  PubMed  Google Scholar 

  15. Okamoto M (1957) A synaptic effect of chromosome V. Wheat Inf Serv 5:6

    Google Scholar 

  16. Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715

    Article  Google Scholar 

  17. Sears ER, Okamoto M (1958) Intergenomic chromosome relationships in hexaploid wheat. Proc Xth Int Cong Genet Montreal 2:258–259

    Google Scholar 

  18. Feldman M (1993) Mode of action of Ph1 in wheat. Crop Sci 33:894–897

    Article  Google Scholar 

  19. Dvorak J, Deal KR, Luo MC (2006) Discovery and mapping of wheat Ph1 suppressor. Genetics 174:17–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Martinez M, Cuñado N, Carcelén N, Romero C (2001) The Ph1 and Ph2 loci play different roles in the specific behaviour of hexaploid wheat Triticum aestivum. Theor Appl Genet 102:751–758

    Article  CAS  Google Scholar 

  21. Dong C, Whitford R, Langridge P (2002) A DNA mismatch repair gene links to the Ph2 locus in wheat. Genome 45:116–124

    Article  CAS  PubMed  Google Scholar 

  22. Sutton T, Whitford R, Baurnann U, Dong M, Able J, Langridge P (2003) The Ph2 pairing homoeologous locus in wheat (Triticum aestivum): identification of candidate meiotic genes using a comparative genetics approach. Plant J 36:443–456

    Article  CAS  PubMed  Google Scholar 

  23. Ozkan H, Feldman M (2001) Genotypic variation in tetraploid wheat affecting homoelogous pairing in hybrids with Aegilops peregrine. Genome 44:1000–1006

    Article  CAS  PubMed  Google Scholar 

  24. Sears E (1972) Agropyron-wheat transfers through induced homoeologous pairing. Can J Genet Cytol 14:746

    Google Scholar 

  25. Roberts MA, Reader SM, Dalgliesh C, Miller TE, Foote TN, Fish LJ, Snape SW, Moore G (1999) Induction and characterisation of Ph1 wheat mutants. Genetics 153:1909–1918

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Sanchez-Moran E, Benavonte E, Orellana J (2001) Analysis of karyotypic stability of homoeologous-pairing mutants in allopolyploid wheat. Chromosoma 110:371–377

    Article  CAS  PubMed  Google Scholar 

  27. Dhalinal HS, Gill BS, Waines JG (1977) Analysis of induced homoeologous pairing in a ph mutant wheat x rye hybrid. J Hered 68:206–209

    Google Scholar 

  28. Knight E, Greer E, Draeger T, Thole V, Reader S, Shaw P, Moore G (2010) Inducing chromosome pairing through premature condensation: analysis of wheat interspecific hybrids. Funct Integr Genomics 10:603–608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Greer E, Martinez-Ramirez A, Pendle A, Colas I, Jones AEM, Moore G, Shaw P (2012) The Ph1 locus suppresses Cdk2-type activity during premeiosis and meiosis in wheat. Plant Cell 24:152–162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Martinez-Perez E, Shaw P, Moore G (2001) The Ph1 locus is needed to ensure specific somatic and meiotic centromere association. Nature 411:204–207

    Article  CAS  PubMed  Google Scholar 

  31. Prieto P, Shaw P, Moore G (2004) Homologue recognition during meiosis is associated with change in chromatin conformation. Nat Cell Biol 6:906–908

    Article  CAS  PubMed  Google Scholar 

  32. Qi L, Friebe B, Zhang P, Gill BS (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res 15:3–19

    Article  CAS  PubMed  Google Scholar 

  33. William HM, Singh RP, Trethowan R, Van Ginkel M, Pellegrinshi A, Huerta-Espin A, Hosington D (2005) Biotechnology applications for wheat improvement CIMMYT. Turk J Agric 29:113–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Moore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Moore, G. (2014). The Control of Recombination in Wheat by Ph1 and Its Use in Breeding. In: Fleury, D., Whitford, R. (eds) Crop Breeding. Methods in Molecular Biology, vol 1145. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0446-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0446-4_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0445-7

  • Online ISBN: 978-1-4939-0446-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics