Skip to main content

Construction and Characterization of Bacterial Artificial Chromosomes (BACs) Containing Herpes Simplex Virus Full-Length Genomes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1144))

Abstract

Bacterial artificial chromosomes (BACs) are suitable vectors not only to maintain the large genomes of herpesviruses in Escherichia coli but also to enable the traceless introduction of any mutation using modern tools of bacterial genetics. To clone a herpes simplex virus genome, a BAC replication origin is first introduced into the viral genome by homologous recombination in eukaryotic host cells. As part of their nuclear replication cycle, genomes of herpesviruses circularize and these replication intermediates are then used to transform bacteria. After cloning, the integrity of the recombinant viral genomes is confirmed by restriction length polymorphism analysis and sequencing. The BACs may then be used to design virus mutants. Upon transfection into eukaryotic cells new herpesvirus strains harboring the desired mutations can be recovered and used for experiments in cultured cells as well as in animal infection models.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. O’Connor M, Peifer M, Bender W (1989) Construction of large DNA segments in Escherichia-coli. Science 244:1307–1312

    Article  PubMed  Google Scholar 

  2. Messerle M, Crnkovic I, Hammerschmidt W, Ziegler H, Koszinowski UH (1997) Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci U S A 94:14759–14763

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Kelley JM, Field CE, Craven MB, Bocskai D, Kim UJ, Rounsley SD, Adams MD (1999) High throughput direct end sequencing of BAC clones. Nucleic Acids Res 27:1539–1546

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Smith GA, Enquist LW (1999) Construction and transposon mutagenesis in Escherichia coli of a full-length infectious clone of pseudorabies virus, an alphaherpesvirus. J Virol 73: 6405–6414

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Borst EM, Benkartek C, Messerle M (2007) Use of bacterial artificial chromosomes in generating targeted mutations in human and mouse cytomegaloviruses, Curr Protoc Immunol. Wiley, Somerset, NJ

    Google Scholar 

  6. Adler H, Messerle M, Koszinowski UH (2003) Cloning of herpesviral genomes as bacterial artificial chromosomes. Rev Med Virol 13: 111–121

    Article  PubMed  CAS  Google Scholar 

  7. Brune W, Messerle M, Koszinowski UH (2000) Forward with BACs—new tools for herpesvirus genomics. Trends Genet 16: 254–259

    Article  PubMed  CAS  Google Scholar 

  8. Ruzsics Z, Koszinowski UH (2008) Mutagenesis of the cytomegalovirus genome. Curr Top Microbiol Immunol 325:41–61

    PubMed  CAS  Google Scholar 

  9. Wagner M, Koszinowski UH (2004) Mutagenesis of viral BACs with linear PCR fragments (ET recombination). In: Zhao S, Stodolsky M (eds) Bacterial artificial chromosomes: volume 2 functional studies, vol 256, Methods Mol Biol. Humana, New York, NY

    Chapter  Google Scholar 

  10. Tischer BK, Smith GA, Osterrieder N (2010) En passant mutagenesis: a two step markerless red recombination system. In: Braman J (ed) In vitro mutagenesis protocols, vol 634, 3rd edn, Methods Mol Biol. Humana, New York, NY

    Google Scholar 

  11. Saeki Y, Ichikawa T, Saeki A, Chiocca EA, Tobler K, Ackermann M, Breakefield XO, Fraefel C (1998) Herpes simplex virus type 1 DNA amplified as bacterial artificial chromosome in Escherichia coli: rescue of replication-competent virus progeny and packaging of amplicon vectors. Hum Gene Ther 9: 2787–2794

    Article  PubMed  CAS  Google Scholar 

  12. Stavropoulos TA, Strathdee CA (1998) An enhanced packaging system for helper-dependent herpes simplex virus vectors. J Virol 72:7137–7143

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Horsburgh BC, Hubinette MM, Qiang D, MacDonald MLE, Tufaro F (1999) Allele replacement an application that permits rapid manipulation of herpes simplex virus type 1 genomes. Gene Ther 6:922–930

    Article  PubMed  CAS  Google Scholar 

  14. Nagel CH, Dohner K, Fathollahy M, Strive T, Borst EM, Messerle M, Sodeik B (2008) Nuclear egress and envelopment of herpes simplex virus capsids analyzed with dual-color fluorescence HSV1(17(+)). J Virol 82: 3109–3124

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Meseda CA, Schmeisser F, Pedersen R, Woerner A, Weir JP (2004) DNA immunization with a herpes simplex virus 2 bacterial artificial chromosome. Virology 318:420–428

    Article  PubMed  CAS  Google Scholar 

  16. Nygardas M, Paavilainen H, Muther N, Nagel CH, Roytta M, Sodeik B, Hukkanen V (2013) A herpes simplex virus-derived replicative vector expressing LIF limits experimental demyelinating disease and modulates autoimmunity. PLoS One 8:e64200

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Tanaka M, Kagawa H, Yamanashi Y, Sata T, Kawaguchi Y (2003) Construction of an excisable bacterial artificial chromosome containing a full-length infectious clone of herpes simplex virus type 1: viruses reconstituted from the clone exhibit wild-type properties in vitro and in vivo. J Virol 77:1382–1391

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Gierasch WW, Zimmerman DL, Ward SL, VanHeyningen TK, Romine JD, Leib DA (2006) Construction and characterization of bacterial artificial chromosomes containing HSV-1 strains 17 and KOS. J Virol Methods 135:197–206

    Article  PubMed  CAS  Google Scholar 

  19. Li Y, Wang S, Zhu H, Zheng CF (2011) Cloning of the herpes simplex virus type 1 genome as a novel luciferase-tagged infectious bacterial artificial chromosome. Arch Virol 156:2267–2272

    Article  PubMed  CAS  Google Scholar 

  20. Wang KN, Kappel JD, Canders C, Davila WF, Sayre D, Chavez M, Pesnicak L, Cohen JI (2012) A herpes simplex virus 2 glycoprotein D mutant generated by bacterial artificial chromosome mutagenesis is severely impaired for infecting neuronal cells and infects only Vero cells expressing exogenous HVEM. J Virol 86:12891–12902

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia-coli using an F-factor-based vector. Proc Natl Acad Sci U S A 89:8794–8797

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Smith GA, Enquist LW (2000) A self-recombining bacterial artificial chromosome and its application for analysis of herpesvirus pathogenesis. Proc Natl Acad Sci U S A 97: 4873–4878

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Fukuhara H, Ino Y, Kuroda T, Martuza RL, Todo T (2005) Triple gene-deleted oncolytic herpes simplex virus vector double-armed with interleukin 18 and soluble B7-1 constructed by bacterial artificial chromosome-mediated system. Cancer Res 65:10663–10668

    Article  PubMed  CAS  Google Scholar 

  24. Kuroda T, Martuza RL, Todo T, Rabkin SD (2006) Flip-Flop HSV-BAC: bacterial artificial chromosome based system for rapid generation of recombinant herpes simplex virus vectors using two independent site-specific recombinases. BMC Biotechnol 6:40

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Jackson SA, Deluca NA (2003) Relationship of herpes simplex virus genome configuration to productive and persistent infections. Proc Natl Acad Sci U S A 100:7871–7876

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Strang BL, Stow ND (2005) Circularization of the herpes simplex virus type 1 genome upon lytic infection. J Virol 79:12487–12494

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Hirt B (1967) Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol 26:365–369

    Article  PubMed  CAS  Google Scholar 

  28. Grant SGN, Jessee J, Bloom FR, Hanahan D (1990) Differential plasmid rescue from transgenic mouse DNAs into Escherichia-coli methylation-restriction mutants. Proc Natl Acad Sci U S A 87:4645–4649

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Balliet JW, Schaffer PA (2006) Point mutations in herpes simplex virus type 1 oriL, but not in oriS, reduce pathogenesis during acute infection of mice and impair reactivation from latency. J Virol 80:440–450

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Hayward GS, Jacob RJ, Wadsworth SC, Roizman B (1975) Anatomy of herpes-simplex virus DNA—evidence for 4 populations of molecules that differ in relative orientations of their long and short components. Proc Natl Acad Sci U S A 72:4243–4247

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Clements JB, Cortini R, Wilkie NM (1976) Analysis of herpesvirus DNA substructure by means of restriction endonucleases. J Gen Virol 30:243–256

    Article  PubMed  CAS  Google Scholar 

  32. Davison AJ, Wilkie NM (1981) Nucleotide-sequences of the joint between the L-segment and S-segments of herpes-simplex virus type-1 and type-2. J Gen Virol 55:315–331

    Article  PubMed  CAS  Google Scholar 

  33. Nagel CH, Dohner K, Binz A, Bauerfeind R, Sodeik B (2012) Improper tagging of the non-essential small capsid protein VP26 impairs nuclear capsid egress of herpes simplex virus. PLoS One 7:e44177

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Stow ND, Mcmonagle EC, Davison AJ (1983) Fragments from both termini of the herpes-simplex virus type-1 genome contain signals required for the encapsidation of viral-DNA. Nucleic Acids Res 11:8205–8220

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG (2005) Simple and highly efficient BAC recombineering using gaIK selection. Nucleic Acids Res 33:e36

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Hall RN, Meers J, Fowler E, Mahony T (2012) Back to BAC: the use of infectious clone technologies for viral mutagenesis. Viruses 4:211–235

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Borst EM, Posfai G, Pogoda F, Messerle M (2004) Mutagenesis of herpesvirus BACs by allele replacement. In: Zhao S, Stodolsky M (eds) Bacterial artificial chromosomes, volume 2: functional studies, vol 256, Methods Mol Biol. Humana, New York, NY

    Google Scholar 

  38. Lancz GJ (1976) Effect of pH on kinetics of herpes-simplex virus inactivation at 36 degrees. Virology 75:488–491

    Article  PubMed  CAS  Google Scholar 

  39. Lee EC, Yu DG, de Velasco JM, Tessarollo L, Swing DA, Court DL, Jenkins NA, Copeland NG (2001) A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73:56–65

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beate Sodeik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nagel, CH., Pohlmann, A., Sodeik, B. (2014). Construction and Characterization of Bacterial Artificial Chromosomes (BACs) Containing Herpes Simplex Virus Full-Length Genomes. In: Diefenbach, R., Fraefel, C. (eds) Herpes Simplex Virus. Methods in Molecular Biology, vol 1144. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0428-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0428-0_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0427-3

  • Online ISBN: 978-1-4939-0428-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics