Skip to main content

Progresses in DNA-Based Heterologous Prime-Boost Immunization Strategies

  • Protocol
  • First Online:
Book cover DNA Vaccines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1143))

Abstract

Although recombinant DNA and recombinant viral vectors expressing HIV antigens have yielded positive outcomes in animal models, these vaccines have not been effectively translated to humans. Despite this, there is still a high level of optimism that poxviral-based vaccine strategies could offer the best hope for developing an effective vaccine against not only HIV-1 but also other chronic diseases where good-quality T and B cell immunity is needed for protection. In this chapter we discuss step by step (1) how recombinant poxviral vectors co-expressing HIV antigens and promising mucosal/systemic adjuvants (e.g., IL-13Rα2) are constructed, (2) how these vectors can be used in alternative heterologous prime-boost immunization strategies, (3) how systemic and mucosal samples are prepared for analysis, followed by (4) two immunological assays: multicolor intracellular cytokine staining and tetramer/homing maker analysis that are used to evaluate effective systemic and mucosal T cell immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leong KH, Ramsay AJ, Boyle DB et al (1994) Selective induction of immune responses by cytokines coexpressed in recombinant fowlpox virus. J Virol 68:8125–8130

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Ramsay AJ, Husband AJ, Ramshaw IA et al (1994) The role of interleukin-6 in mucosal IgA antibody responses in vivo. Science 264:561–563

    Article  CAS  PubMed  Google Scholar 

  3. Kent SJ, Zhao A, Best SJ et al (1998) Enhanced T-cell immunogenicity and protective efficacy of a human immunodeficiency virus type 1 vaccine regimen consisting of consecutive priming with DNA and boosting with recombinant fowlpox virus. J Virol 72:10180–10188

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Hanke T, Samuel RV, Blanchard TJ et al (1999) Effective induction of simian immunodeficiency virus-specific cytotoxic T lymphocytes in macaques by using a multiepitope gene and DNA prime-modified vaccinia virus Ankara boost vaccination regimen. J Virol 73:7524–7532

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Amara RR, Villinger F, Altman JD et al (2001) Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science 292:69–74

    Article  CAS  PubMed  Google Scholar 

  6. Stambas J, Brown SA, Gutierrez A et al (2005) Long lived multi-isotype anti-HIV antibody responses following a prime-double boost immunization strategy. Vaccine 23:2454–2464

    Article  CAS  PubMed  Google Scholar 

  7. Metcalf D, Begley CG, Johnson GR et al (1986) Effects of purified bacterially synthesized murine multi-CSF (IL-3) on hematopoiesis in normal adult mice. Blood 68:46–57

    CAS  PubMed  Google Scholar 

  8. Kelleher AD, Puls RL, Bebbington M et al (2006) A randomized, placebo-controlled phase I trial of DNA prime, recombinant fowlpox virus boost prophylactic vaccine for HIV-1. AIDS 20:294–297

    Article  CAS  PubMed  Google Scholar 

  9. Hemachandra A, Puls RL, Sirivichayakul S et al (2010) An HIV-1 clade A/E DNA prime, recombinant fowlpox virus boost vaccine is safe, but non-immunogenic in a randomized phase I/IIa trial in Thai volunteers at low risk of HIV infection. Hum Vaccin 6:835–840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. McCormack S, Stohr W, Barber T et al (2008) EV02: a Phase I trial to compare the safety and immunogenicity of HIV DNA-C prime-NYVAC-C boost to NYVAC-C alone. Vaccine 26:3162–3174

    Article  CAS  PubMed  Google Scholar 

  11. Sekaly RP (2008) The failed HIV Merck vaccine study: a step back or a launching point for future vaccine development? J Exp Med 205:7–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Ranasinghe C, Turner SJ, McArthur C et al (2007) Mucosal HIV-1 pox virus prime-boost immunization induces high-avidity CD8+ T cells with regime-dependent cytokine/granzyme B profiles. J Immunol 178:2370–2379

    Article  CAS  PubMed  Google Scholar 

  13. Gomez CE, Najera JL, Jimenez EP et al (2007) Head-to-head comparison on the immunogenicity of two HIV/AIDS vaccine candidates based on the attenuated poxvirus strains MVA and NYVAC co-expressing in a single locus the HIV-1BX08 gp120 and HIV-1(IIIB) Gag-Pol-Nef proteins of clade B. Vaccine 25:2863–2885

    Article  CAS  PubMed  Google Scholar 

  14. Esteban M (2009) Attenuated poxvirus vectors MVA and NYVAC as promising vaccine candidates against HIV/AIDS. Hum Vaccin 5:867–871

    CAS  PubMed  Google Scholar 

  15. Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S et al (2009) Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 361:2209–2220

    Article  CAS  PubMed  Google Scholar 

  16. Yuan Z, Chen W, Zhang J et al (2012) Development of an immunoassay for differentiating human immunodeficiency virus infections–from vaccine-induced immune response in Tiantan vaccine trials in China. Clin Biochem 45:1219–1224

    Article  CAS  PubMed  Google Scholar 

  17. Kent SJ, Dale CJ, Ranasinghe C et al (2005) Mucosally-administered human-simian immunodeficiency virus DNA and fowlpoxvirus-based recombinant vaccines reduce acute phase viral replication in macaques following vaginal challenge with CCR5-tropic SHIVSF162P3. Vaccine 23:5009–5021

    Article  CAS  PubMed  Google Scholar 

  18. Ranasinghe C, Medveczky JC, Woltring D et al (2006) Evaluation of fowlpox-vaccinia virus prime-boost vaccine strategies for high-level mucosal and systemic immunity against HIV-1. Vaccine 24:5881–5895

    Article  CAS  PubMed  Google Scholar 

  19. Ranasinghe C, Ramshaw IA (2009) Immunisation route-dependent expression of IL-4/IL-13 can modulate HIV-specific CD8(+) CTL avidity. Eur J Immunol 39:1819–1830

    Article  CAS  PubMed  Google Scholar 

  20. Ranasinghe C, Eyers F, Stambas J et al (2011) A comparative analysis of HIV-specific mucosal/systemic T cell immunity and avidity following rDNA/rFPV and poxvirus-poxvirus prime boost immunisations. Vaccine 29:3008–3020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ranasinghe C, Trivedi S, Stambas J et al (2013) Unique IL-13Ralpha2-based HIV-1 vaccine strategy to enhance mucosal immunity, CD8(+) T-cell avidity and protective immunity. Mucosal Immunol 6(6):1068–1080. doi:10.1038/mi.2013.1

    Article  CAS  PubMed  Google Scholar 

  22. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Spring Harbor, NY

    Google Scholar 

  23. Coupar BE, Andrew ME, Boyle DB (1988) A general method for the construction of recombinant vaccinia viruses expressing multiple foreign genes. Gene 68:1–10

    Article  CAS  PubMed  Google Scholar 

  24. Heine HG, Boyle DB (1993) Infectious bursal disease virus structural protein VP2 expressed by a fowlpox virus recombinant confers protection against disease in chickens. Arch Virol 131:277–292

    Article  CAS  PubMed  Google Scholar 

  25. Coupar BE, Purcell DF, Thomson SA et al (2006) Fowlpox virus vaccines for HIV and SHIV clinical and pre-clinical trials. Vaccine 24:1378–1388

    Article  CAS  PubMed  Google Scholar 

  26. Dale CJ, Thomson S, De Rose R et al (2006) Prime-boost strategies in DNA vaccines. Methods Mol Med 127:171–197

    CAS  PubMed  Google Scholar 

  27. Boyle DB, Anderson MA, Amos R et al (2004) Construction of recombinant fowlpox viruses carrying multiple vaccine antigens and immunomodulatory molecules. Biotechniques 37(104–106):108–111

    Google Scholar 

  28. Ranasinghe C, Trivedi S, Stambas J et al (2013) Unique IL-13Rα2 based HIV-1 vaccine strategy to enhance mucosal immunity, CD8+ T cell avidity and protective immunity. Mucosal Immunol 6(6):1068–1080

    Article  CAS  PubMed  Google Scholar 

  29. Kozak M (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15:8125–8148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Coupar BE, Andrew ME, Both GW et al (1986) Temporal regulation of influenza hemagglutinin expression in vaccinia virus recombinants and effects on the immune response. Eur J Immunol 16:1479–1487

    Article  CAS  PubMed  Google Scholar 

  31. Townsend A, Bastin J, Gould K et al (1988) Defective presentation to class I-restricted cytotoxic T lymphocytes in vaccinia-infected cells is overcome by enhanced degradation of antigen. J Exp Med 168:1211–1224

    Article  CAS  PubMed  Google Scholar 

  32. Earl PL, Moss B (2001) Characterization of recombinant vaccinia viruses and their products. Curr Protoc Mol Biol 43:16.18.11–16.18.11

    Google Scholar 

  33. Earl PL, Moss B, Wyatt LS et al (2001) Generation of recombinant vaccinia viruses. Curr Protoc Mol Biol 43:16.17.11–16.17.19

    Google Scholar 

  34. Earl PL, Cooper N, Wyatt LS et al (2001) Preparation of cell cultures and vaccinia virus stocks. Curr Protoc Mol Biol 43:16.16.11–16.16.13

    Google Scholar 

  35. Buller RM, Smith GL, Cremer K et al (1985) Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase-negative phenotype. Nature 317:813–815

    Article  CAS  PubMed  Google Scholar 

  36. Andrew ME, Coupar BE, Boyle DB (1989) Humoral and cell-mediated immune responses to recombinant vaccinia viruses in mice. Immunol Cell Biol 67:331–337

    Article  PubMed  Google Scholar 

  37. Listvanova S, Temmerman S, Stordeur P et al (2003) Optimal kinetics for quantification of antigen-induced cytokines in human peripheral blood mononuclear cells by real-time PCR and by ELISA. J Immunol Methods 281:27–35

    Article  CAS  PubMed  Google Scholar 

  38. Day SL (2008) Evaluation of interferon responses and activity for effective vaccine therapy. Ph.D., Australian National University

    Google Scholar 

  39. Trivedi S, Jackson RJ, Ranasinghe C (2012) Interleukin-3 and granulocyte-macrophage colony-stimulating factor expression, a biomarker of memory CD8+ T cell immunity and vaccine efficacy. J Vaccines Vaccination 3:166–173

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian National Health and Medical Research Council project grant award 525431 (CR), Australian Centre for Hepatitis and HIV Virology EOI 2010 (CR) & 2012 grant (CR&RJJ), and Bill and Melinda Gates Foundation GCE Phase I grant OPP1015149 (CR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charani Ranasinghe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jackson, R.J., Boyle, D.B., Ranasinghe, C. (2014). Progresses in DNA-Based Heterologous Prime-Boost Immunization Strategies. In: Rinaldi, M., Fioretti, D., Iurescia, S. (eds) DNA Vaccines. Methods in Molecular Biology, vol 1143. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0410-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0410-5_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0409-9

  • Online ISBN: 978-1-4939-0410-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics