Skip to main content

Enhancement of Plasmid-Mediated Transgene Expression

  • Protocol
  • First Online:
Book cover DNA Vaccines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1143))

  • 3137 Accesses

Abstract

A large number of studies aimed at the treatment of cancer, autoimmune and metabolic diseases, neurodegenerative disorders, allergic diseases, as well as muscle disorders strengthen the fact that gene therapy could represent an alternative method to treat human diseases where conventional approaches are less effective.

To improve transgene expression from plasmid vectors, DNA nuclear targeting sequences (DTSs) can be introduced in a vector backbone to increase in vivo expression up to 20-fold using electroporation (EP) delivery in muscle tissue. The purpose of this chapter is to represent a step-by-step strategy for the construction of a plasmid vector with enhanced efficiency of nuclear plasmid uptake and the methodic for the in vivo efficiency evaluation of the obtained expression vector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iurescia S, Fioretti D, Fazio VM et al (2011) Design and pre-clinical development of epitope-based DNA vaccines against B-cell lymphoma. Curr Gene Ther 11:414–422

    Article  CAS  PubMed  Google Scholar 

  2. Iurescia S, Fioretti D, Pierimarchi P et al (2010) Genetic immunization with CDR3-based fusion vaccine confers protection and long-term tumor-free survival in a mouse model of lymphoma. J Biomed Biotechnol 2010:316069

    Article  PubMed Central  PubMed  Google Scholar 

  3. Rinaldi M, Fioretti D, Iurescia S et al (2008) Anti-tumor immunity induced by CDR3-based DNA vaccination in a murine B-cell lymphoma model. Biochem Biophys Res Commun 370:279–284

    Article  CAS  PubMed  Google Scholar 

  4. Fazio VM, Ria F, Franco E et al (2004) Immune response at birth, long-term immune memory and 2 years follow-up after in-utero anti-HBV DNA immunization. Gene Ther 11:544–551

    Article  CAS  PubMed  Google Scholar 

  5. Rinaldi M, Catapano AL, Parrella P et al (2000) Treatment of severe hypercholesterolemia in apolipoprotein E-deficient mice by intramuscular injection of plasmid DNA. Gene Ther 7:1795–1801

    Article  CAS  PubMed  Google Scholar 

  6. Rinaldi M, Ria F, Parrella P et al (2001) Antibodies elicited by naked DNA vaccination against the complementary-determining region 3 hypervariable region of immunoglobulin heavy chain idiotypic determinants of B-lymphoproliferative disorders specifically react with patients’ tumor cells. Cancer Res 61:1555–1562

    CAS  PubMed  Google Scholar 

  7. Rinaldi M, Signori E, Rosati P et al (2006) Feasibility of in utero DNA vaccination following naked gene transfer into pig fetal muscle: transgene expression, immunity and safety. Vaccine 24:4586–4591

    Article  CAS  PubMed  Google Scholar 

  8. Fioretti D, Iurescia S, Fazio VM et al (2010) DNA vaccines: developing new strategies against cancer. J Biomed Biotechnol 2010:174378

    Article  PubMed Central  PubMed  Google Scholar 

  9. Fioretti D, Iurescia S, Fazio VM et al (2013) In vivo DNA electrotransfer for immunotherapy of cancer and neurodegenerative diseases. Curr Drug Metab 14:279–290

    Article  CAS  PubMed  Google Scholar 

  10. Luke JM, Vincent JM, Du SX et al (2011) Improved antibiotic-free plasmid vector design by incorporation of transient expression enhancers. Gene Ther 18:334–343

    Article  CAS  PubMed  Google Scholar 

  11. Lam AP, Dean DA (2010) Progress and prospects: nuclear import of nonviral vectors. Gene Ther 17:439–447

    Article  CAS  PubMed  Google Scholar 

  12. Wagstaff KM, Jans DA (2007) Nucleo-cytoplasmic transport of DNA: enhancing non-viral gene transfer. Biochem J 406:185–202

    Article  CAS  PubMed  Google Scholar 

  13. Miller AM, Munkonge FM, Alton EW et al (2009) Identification of protein cofactors necessary for sequence-specific plasmid DNA nuclear import. Mol Ther 17:1897–1903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Li S, MacLaughlin FC, Fewell JG et al (2001) Muscle-specific enhancement of gene expression by incorporation of SV40 enhancer in the expression plasmid. Gene Ther 8:494–497

    Article  CAS  PubMed  Google Scholar 

  15. Dean DA, Dean BS, Muller S et al (1999) Sequence requirements for plasmid nuclear import. Exp Cell Res 253:713–722

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniela Fioretti or Monica Rinaldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fioretti, D., Iurescia, S., Rinaldi, M. (2014). Enhancement of Plasmid-Mediated Transgene Expression. In: Rinaldi, M., Fioretti, D., Iurescia, S. (eds) DNA Vaccines. Methods in Molecular Biology, vol 1143. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0410-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0410-5_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0409-9

  • Online ISBN: 978-1-4939-0410-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics