Skip to main content
Book cover

DNA Vaccines pp 219–240Cite as

Pharmaceutical Grade Large-Scale Plasmid DNA Manufacturing Process

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1143))

Abstract

For pharmaceutical applications of plasmid DNA, either direct or indirect, certain quality standards are required. Whereas for direct gene transfer into human “Good Manufacturing Practice” (GMP) grade is mandatory, for GMP production of, e.g., viral vectors (AAV, etc.) the plasmid DNA used needs not necessarily be produced under GMP.

Besides such regulatory aspects up-scaling of the plasmid DNA production process from research laboratory scale (up to a few milligrams) to industrial scales (milligram to gram scales) is an issue that is addressed here.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lederberg J (1952) Cell genetics and hereditary symbiosis. Physiol Rev 32:403–430

    CAS  PubMed  Google Scholar 

  2. Lahijani R, Hulley G, Soriano G et al (1996) High-yield production of pBR322-derived plasmids intended for human gene therapy by employing a temperature-controllable point mutation. Hum Gene Ther 7:1971–1980

    Article  CAS  PubMed  Google Scholar 

  3. Schmidt T, Friehs K, Flaschel E et al (1998) Method for the isolation of ccc plasmid DNA. WO 1999/061633

    Google Scholar 

  4. Carnes AE, Hodgson CP, Williams JA (2006) Inducible Escherichia coli fermentation for increased plasmid DNA production. Biotechnol Appl Biochem 45:155–166

    Article  CAS  PubMed  Google Scholar 

  5. Hoare M, Levy MS, Bracewell DG et al (2005) Bioprocess engineering issues that would be facing in producing a DNA vaccine at up to 100 m3 fermentation scale for an influenza pandemic. Biotechnol Prog 2005(21): 1577–1592

    Article  Google Scholar 

  6. Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Maucksch C, Connor B, Rudolph C (2013) Plasmid DNA concatemers: influence of plasmid structure on transfection efficiency. In: Schleef M (ed) Minicircle and miniplasmid DNA vectors—the future of non-viral and viral gene transfer. Wiley-Blackwell, Weinheim

    Google Scholar 

  8. Wooddell CI, Subbotin VM, Sebestyén MG et al (2011) Muscle damage after delivery of naked plasmid DNA into skeletal muscles is batch dependent. Hum Gene Ther 22: 225–235

    Article  CAS  PubMed  Google Scholar 

  9. Schmidt T, Friehs K, Schleef M, Voss K, Flaschel E (1999) Quantitative analysis of plasmid forms by agarose and capillary gel electrophoresis. Anal Biochem 274:235–240

    Article  CAS  PubMed  Google Scholar 

  10. Schleef M, Schmidt T (2004) Animal-free production of ccc-supercoiled plasmids for research and clinical applications. J Gene Med 6:S45–S53

    Article  CAS  PubMed  Google Scholar 

  11. Schleef M, Baier R, Walther W et al (2006) Long-term stability and topology analysis of plasmid DNA by capillary gel electrophoresis. Bioprocess Int 4:38–40

    CAS  Google Scholar 

  12. Janshoff A, Neitzert M, Oberdorfer Y et al (2000) Force spectroscopy of molecular systems-single molecule spectroscopy of polymers and biomolecules. Angew Chem Int Ed Engl 39(18):3212–3237

    Article  CAS  PubMed  Google Scholar 

  13. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933

    Article  PubMed  Google Scholar 

  14. Drake B, Prater CB, Weisenhorn AL et al (1989) Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243(4898):1586–1589

    Article  CAS  PubMed  Google Scholar 

  15. Rischmüller A, Viefhues M, Dieding M et al (2013) Analytic tools in minicircle production. In: Schleef M (ed) Minicircle and miniplasmid DNA vectors—the future of non-viral and viral gene transfer. Wiley-Blackwell, Weinheim

    Google Scholar 

  16. Viefhues M, Wegener S, Rischmüller A, Schleef M, Anselmetti D (2013) Dielectrophoresis based continuous-flow nano sorter: fast quality control of gene vaccines. Lab Chip 13: 3111–3118

    Article  CAS  PubMed  Google Scholar 

  17. EMEA (2005) Guideline on development and manufacture of lentiviral vectors. CPMP/BWP/2458/03, London

    Google Scholar 

  18. EMEA (2001) Note for guidance on the quality, preclinical and clinical aspects of gene transfer medical products. CPMP/BWP/ 3088/99, London

    Google Scholar 

  19. Gengenbach RJ (2008) GMP-Qualifizierung und Validierung von Wirkstoffanlagen. Wiley-VCH, Weinheim

    Book  Google Scholar 

  20. Schmidt T, Schleef M, Friehs K, Flaschel E (1999) Hochzelldichtefermentation zur Gewinnung von Plasmid-DNA für Gentherapie und genetische Impfung. BIOforum 22: 174–177

    Google Scholar 

  21. Lee SY, Chang HN (1994) High cell density cultivation of Escherichia coli using sucrose as a carbon source. Biotechnol Lett 15:971–974

    Article  Google Scholar 

  22. Nakano K, Rischke M, Sato S, Märkl H (1997) Influence of acetic acid on the growth of Escherichia coli K12 during high-cell-density cultivation in a dialysis reactor. Appl Microbiol Biotechnol 48:597–601

    Article  CAS  PubMed  Google Scholar 

  23. Macaloney G, Hall JW, Rollins MJ et al (1997) The utility and performance of near-infrared spectroscopy in simultaneous monitoring multiple components in a high cell density recombinant Escherichia coli production process. Bioproc Eng 17:157–167

    CAS  Google Scholar 

  24. Paalme T, Tiisma K, Kahru A et al (1990) Glucose-limited fed-batch cultivation of Escherichia coli with computer-controlled fixed growth rate. Biotechnol Bioeng 35:312–319

    Article  CAS  PubMed  Google Scholar 

  25. EMEA (2001) Note for guidance on minimising the risk of transmitting animal spongiform encephalopathy agents via human and veterinary medicinal products. CPMP/410/01 rev 1, London

    Google Scholar 

  26. Voss C, Schmidt T, Schleef M et al (2004) Effect of ammonium chloride on plasmid DNA production in high cell density batch culture for biopharmaceutical use. J Chem Technol Biotechnol 79:57–62

    Article  CAS  Google Scholar 

  27. Urthaler J, Buchinger W, Necina R (2005) Improved downstream process for the production of plasmid DNA for gene therapy. Acta Biochim Pol 52:703–711

    CAS  PubMed  Google Scholar 

  28. Levy MS, Collins IJ, Tsai JT et al (2000) Removal of contaminant nucleic acids by nitrocellulose filtration during pharmaceutical-grade plasmid DNA processing. J Biotechnol 76:197–205

    Article  CAS  PubMed  Google Scholar 

  29. Schleef M (1999) Issues of large-scale plasmid manufacturing. In: Rehm HJ, Reed G, Pühler A et al (eds) Biotechnology, vol 5a, Recombinant proteins, monoclonal antibodies and therapeutic genes. Wiley-VCH, Weinheim, pp 443–470

    Google Scholar 

  30. Lee AL, Sagar S (1999) A method for large scale plasmid purification. WO 96/36706

    Google Scholar 

  31. Schumacher I, Freitag R, Hilbrig F (2002) Method for treating biomass for producing cell lysate containing plasmid DNA. WO 02/057446 A2

    Google Scholar 

  32. Hebel H, Ramakrishnan S, Gonzales H et al (2004). Devices and methods for biomaterial production. WO2004/108260

    Google Scholar 

  33. Voß C, Schmidt T, Schleef M (2005) From bulk to delivery: plasmid m, manufacturing and storage. In: Schleef M (ed) DNA pharmaceuticals: formulation and delivery in gene therapy, DNA vaccination and immunotherapy. Wiley-VCH, Weinheim, pp 23–42

    Google Scholar 

  34. Voss C, Flaschel E (2010) Method for producing extra-chromosomal nucleic acid molecules. US 7,842,481 B2

    Google Scholar 

  35. Colpan M, Schorr J, Moritz P (1995) Process for producing endotoxin-free or endotoxin-poor nucleic acids and/or oligonucleotides for gene therapy. WO 95/21177

    Google Scholar 

  36. Thatcher DR, Hitchcock AG, Hanak JA et al (1997) Method of plasmid DNA production and purification. WO 97/29190

    Google Scholar 

  37. Bussey L, Adamson R, Atchley A (1998) Methods for purifying nucleic acids. WO 98/05673

    Google Scholar 

  38. Ferreira GNM, Prazeres DMF, Cabral JMS et al (2001) Plasmid manufacturing—an overview. In: Schleef M (ed) Plasmids for therapy and vaccination. Wiley-VCH, Weinheim, pp 193–236

    Chapter  Google Scholar 

  39. Green AP (1999) Purification of supercoiled plasmid. In: Lowrie DB, Whalen RG (eds) DNA vaccines: methods and protocols. Humana, Totowa, NJ, pp 1–9

    Chapter  Google Scholar 

  40. Lemmens R, Olsson U, Nyhammar T et al (2003) Supercoiled plasmid DNA: selective purification by thiophilic/aromatic adsorption. J Chromatogr B 784:291–300

    Article  CAS  Google Scholar 

  41. Strancar A, Podgornik A, Barut M et al (2002) Short monolithic columns as stationary phases for biochromatography. Adv Biochem Eng Biotechnol 76:49–85

    CAS  PubMed  Google Scholar 

  42. Schleef M (ed) (2013) Minicircle and miniplasmid DNA vectors—the future of non-viral and viral gene transfer. Wiley-Blackwell, Weinheim

    Google Scholar 

  43. Preston A (2003) Choosing a cloning vector. In Casali N, Preston A (eds) E. coli plasmid vectors. Humana Press, Totowa NJ, pp 19–26. Gene Ther 22:225-235

    Google Scholar 

  44. Schwarz B, Kempf T, Schillinger U et al (2007) Cloning of the feline cytokines IL-2, IFNy and GM-CSF for an adjuvant nonviral gene therapy of feline fibrosarcoma. Kleintierpraxis 52:569–578

    Google Scholar 

  45. Schleef M, Blaesen M (2009) Production of plasmid DNA as a pharmaceutical. In: Walther W, Stein US (eds) Methods in molecular biology, vol 542, Gene therapy of cancer., pp 471–495

    Google Scholar 

Download references

Acknowledgement

We thank the research team of PlasmidFactory, Bielefeld, Germany, for critical discussion and contributing work; Janine Conde-Lopez for support with figures; and the German Federal Ministry of Education and Research (BMBF) for grants BioChancePLUS (0313749) and Nano-4-Life (13N9063). Part of this work has also been supported by the CliniGene Network of Excellence funded by the European Commission FP6 Research Programme under contract LSHB-CT-2006-018933.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schleef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schmeer, M., Schleef, M. (2014). Pharmaceutical Grade Large-Scale Plasmid DNA Manufacturing Process. In: Rinaldi, M., Fioretti, D., Iurescia, S. (eds) DNA Vaccines. Methods in Molecular Biology, vol 1143. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0410-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0410-5_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0409-9

  • Online ISBN: 978-1-4939-0410-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics