Skip to main content

Bayesian Systems-Based Genetic Association Analysis with Effect Strength Estimation and Omic Wide Interpretation: A Case Study in Rheumatoid Arthritis

  • Protocol
  • First Online:
  • 2205 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1142))

Abstract

Rich dependency structures are often formed in genetic association studies between the phenotypic, clinical, and environmental descriptors. These descriptors may not be standardized, and may encompass various disease definitions and clinical endpoints which are only weakly influenced by various (e.g., genetic) factors. Such loosely defined complex intermediate clinical phenotypes are typically used in follow-up candidate gene association studies, e.g., after genome-wide analysis, to deepen the understanding of the associations and to estimate effect strength.

This chapter discusses a solid methodology, which is useful in such a scenario, by using probabilistic graphical models, namely, Bayesian networks in the Bayesian statistical framework. This method offers systematically scalable, comprehensive hierarchical hypotheses about multivariate relevance. We discuss its workflow: from data engineering to semantic publication of the results. We overview the construction, visualization, and interpretation of complex hypotheses related to the structural analysis of relevance. Furthermore, we illustrate the use of a dependency model-based relevance measure, which takes into account the structural properties of the model, for quantifying the effect strength. Finally, we discuss the “interpretational” or translational challenge of a genetic association study, with a focus on the fusion of heterogeneous omic knowledge to reintegrate the results into a genome-wide context.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dermitzakis E (2008) From gene expression to disease risk. Nat Genet 40:492–493

    PubMed  CAS  Google Scholar 

  2. Maher B (2008) Personal genomes: the case of the missing heritability. Nature 456:18–21

    PubMed  CAS  Google Scholar 

  3. Joober R (2011) The 1000 Genomes Project: deep genomic sequencing waiting for deep psychiatric phenotyping. J Psychiatry Neurosci 36:147–149

    PubMed Central  PubMed  Google Scholar 

  4. Moreau Y, Antal P, Fannes G, De Moor B (2003) Probabilistic graphical models for computational biomedicine. Methods Inf Med 42:161–168

    PubMed  CAS  Google Scholar 

  5. Saeys Y, Inza I, Larranaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23:2507–2517

    PubMed  CAS  Google Scholar 

  6. Rodin A, Boerwinkle E (2005) Mining genetic epidemiology data with Bayesian networks I: Bayesian networks and example application (plasma apoE levels). Bioinformatics 21:3273–3278

    PubMed Central  PubMed  CAS  Google Scholar 

  7. Verzilli C, Stallard N, Whittaker J (2006) Bayesian graphical models for genomewide association studies. Am J Hum Genet 79: 100–112

    PubMed Central  PubMed  CAS  Google Scholar 

  8. Mourad R, Sinoquet C, Leray P (2012) Probabilistic graphical models for genetic association studies. Brief Bioinform 13: 20–33

    PubMed  Google Scholar 

  9. Li W, Wang M, Irigoyen P, Gregersen P (2006) Inferring causal relationships among intermediate phenotypes and biomarkers: a case study of rheumatoid arthritis. Bioinformatics 22:1503–1507

    PubMed  CAS  Google Scholar 

  10. Xing H, McDonagh P, Bienkowska J, Cashorali T, Runge K, Miller R, DeCaprio D, Church B, Roubenoff R, Khalil I, Carulli J (2011) Causal modeling using network ensemble simulations of genetic and gene expression data predicts genes involved in rheumatoid arthritis. PLoS Comput Biol 7:e1001105

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Han B, Park M, Chen X (2010) A Markov blanket-based method for detecting causal SNPs in GWAS. BMC Bioinformatics 11 Suppl 3:S5

    Google Scholar 

  12. Jiang X, Barmada MM, Visweswaran S (2010) Identifying genetic interactions in genome-wide data using Bayesian networks. Genet Epidemiol 34:575–581

    PubMed Central  PubMed  Google Scholar 

  13. Fridley B (2009) Bayesian variable and model selection methods for genetic association studies. Genet Epidemiol 33:27–37

    PubMed  Google Scholar 

  14. Antal P, Millinghoffer A, Hullám G, Hajós G, Sárközy P, Szalai C, Falus A (in press) Bayesian, systems-based, multilevel analysis of biomarkers of complex phenotypes: from interpretation to decisions. In: Sinoquet C, Mourad R (eds) Probabilistic graphical models for genetics, genomics and postgenomics. ISBN: 978-0-19-870902-2, Oxford University Press

    Google Scholar 

  15. Antal P, Millinghoffer A, Hullam G, Szalai C, Falus A (2008) A Bayesian view of challenges in feature selection: feature aggregation, multiple targets, redundancy and interaction. In: Saeys Y, Liu H, Inza I, Wehenkel L, Van de Peer Y (eds) New challenges for feature selection in data mining and knowledge discovery (FSDM), JMLR workshop and conference proceedings, September 15, 2008, Antwerp, Belgium, pp 74–89

    Google Scholar 

  16. Antal P, Hullám G, Gézsi A, Millinghoffer A (2006) Learning complex Bayesian network features for classification. In: Third European workshop on probabilistic graphical model, Prague, pp 9–16

    Google Scholar 

  17. Pal Z, Antal P, Millinghoffer A, Hullam G, Paloczi K, Toth S, Gabius H, Molnar M, Falus A, Buzas E (2010) A novel galectin-1 and interleukin 2 receptor beta haplotype is associated with autoimmune myasthenia gravis. J Neuroimmunol 229:107–111

    PubMed  CAS  Google Scholar 

  18. Sarkozy P, Marx P, Millinghoffer A, Varga G, Szekely A, Nemoda Z, Demetrovics Z, Sasvari-Szekely M, Antal P (2011) Bayesian data analytic knowledge bases for genetic association studies. In: Arjen Hommersom PL (ed) The 13th conference on artificial intelligence in medicine (AIME’11): probabilistic problem solving in biomedicine, July 2–6, 2011, Bled, Slovenia, pp 55–66

    Google Scholar 

  19. Lautner-Csorba O, Gezsi A, Semsei AF, Antal P, Erdelyi DJ, Schermann G, Kutszegi N, Csordas K, Hegyi M, Kovacs G, Falus A, Szalai C (2012) Candidate gene association study in pediatric acute lymphoblastic leukemia evaluated by Bayesian network based Bayesian multilevel analysis of relevance. BMC Med Genomics 5:42

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Ungvari I, Hullam G, Antal P, Kiszel P, Gezsi A, Hadadi E, Virag V, Hajos G, Millinghoffer A, Nagy A, Kiss A, Semsei A, Temesi G, Melegh B, Kisfali P, Szell M, Bikov A, Galffy G, Tamasi L, Falus A, Szalai C (2012) Evaluation of a partial genome screening of two asthma susceptibility regions using Bayesian network based Bayesian multilevel analysis of relevance. PLoS One 7:e33573

    PubMed Central  PubMed  CAS  Google Scholar 

  21. Varga G, Szekely A, Antal P, Sarkozy P, Nemoda Z, Demetrovics Z, Sasvari-Szekely M (2012) Additive effects of serotonergic and dopaminergic polymorphisms on trait impulsivity. Am J Med Genet B Neuropsychiatr Genet 159B(3):281–288

    PubMed  Google Scholar 

  22. Lautner-Csorba O, Gézsi A, Erdélyi D, Hullám G, Antal P, Semsei Á, Kutszegi N, Kovács G, Falus A, Szalai C (2013) Roles of genetic polymorphisms in the folate pathway in childhood acute lymphoblastic leukemia evaluated by Bayesian relevance and effect size analysis. PLoS One 8:e69843

    PubMed Central  PubMed  CAS  Google Scholar 

  23. Vereczkei A, Demetrovics Z, Szekely A, Sarkozy P, Antal P, Szilagyi A, Sasvari-Szekely M, Barta C (2013) Multivariate analysis of dopaminergic gene variants as risk factors of heroin dependence. PLoS One 8:e66592

    PubMed Central  PubMed  CAS  Google Scholar 

  24. Stephens M, Balding D (2009) Bayesian statistical methods for genetic association studies. Nat Rev Genet 10:681–690

    PubMed  CAS  Google Scholar 

  25. Beaumont M, Rannala B (2004) The Bayesian revolution in genetics. Nat Rev Genet 5:251–261

    PubMed  CAS  Google Scholar 

  26. Roeder K, Devlin B, Wasserman L (2007) Improving power in genome-wide association studies: weights tip the scale. Genet Epidemiol 31:741–747

    PubMed  Google Scholar 

  27. Curtis D, Vine A, Knight J (2007) A pragmatic suggestion for dealing with results for candidate genes obtained from genome wide association studies. BMC Genet 8:20

    PubMed Central  PubMed  Google Scholar 

  28. Jiang X, Barmada M, Cooper G, Becich M (2011) A Bayesian method for evaluating and discovering disease loci associations. PLoS One 6:e22075

    PubMed Central  PubMed  CAS  Google Scholar 

  29. Saccone S, Saccone N, Swan G, Madden P, Goate A, Rice J, Bierut L (2008) Systematic biological prioritization after a genome-wide association study: an application to nicotine dependence. Bioinformatics 24: 1805–1811

    PubMed Central  PubMed  CAS  Google Scholar 

  30. Saccone S, Bolze R, Thomas P, Quan J, Mehta G, Deelman E, Tischfield J, Rice J (2010) SPOT: a web-based tool for using biological databases to prioritize SNPs after a genome-wide association study. Nucleic Acids Res 38:W201–W209

    PubMed Central  PubMed  CAS  Google Scholar 

  31. Saccone S, Chesler E, Haendel M (2012) Applying in silico integrative genomics to genetic studies of human disease. Bioinformatics of Behavior: Part 1 103: 133–156

    Google Scholar 

  32. Madigan D, Andersson S, Perlman M, Volinsky C (1996) Bayesian model averaging and model selection for Markov equivalence classes of acyclic digraphs. Comm Stat Theor Methods 25:2493–2519

    Google Scholar 

  33. Friedman N, Koller D (2003) Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks. Mach Learn 50:95–125

    Google Scholar 

  34. Efron B (2013) Bayes’ theorem in the 21st century. Science 340:1177–1178

    PubMed  Google Scholar 

  35. Pearl J (2000) Causality: models, reasoning, and inference. Cambridge University Press, New York

    Google Scholar 

  36. Moreau Y, Tranchevent L (2012) Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nat Rev Genet 13:523–536

    PubMed  CAS  Google Scholar 

  37. Pettersson F, Anderson C, Clarke G, Barrett J, Cardon L, Morris A, Zondervan K (2009) Marker selection for genetic case-control association studies. Nat Protoc 4:743–752

    PubMed Central  PubMed  CAS  Google Scholar 

  38. Nsengimana J, Bishop DT (2012) Design considerations for genetic linkage and association studies. Methods Mol Biol 850:237–262

    PubMed  Google Scholar 

  39. Friedman N, Yakhini Z (1996) On the sample complexity of learning Bayesian networks. In: Horvitz E, Jensen F (eds.) UAI’96: Proceedings of the Twelfth international conference on Uncertainty in artificial intelligence, August 1-4, 1996, Portland, Oregon, USA, pp 274–282

    Google Scholar 

  40. Hullám G, Antal P, Millinghoffer A, Szalai C, Falus A (2010) Evaluation of a Bayesian model-based approach in GA studies. In: JMLR workshop and conference proceeding, pp 30–43

    Google Scholar 

  41. Vittinghoff E, McCulloch C (2007) Relaxing the rule of ten events per variable in logistic and Cox regression. Am J Epidemiol 165:710–718

    PubMed  Google Scholar 

  42. Stahl EA, Wegmann D, Trynka G, Gutierrez-Achury J, Do R, Voight BF, Kraft P, Chen R, Kallberg HJ, Kurreeman FA, Diabetes Genetics Replication and Meta-analysis Consortium, Myocardial Infarction Genetics Consortium (2012) Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nat Genet 44:483–489

    PubMed  CAS  Google Scholar 

  43. Skapenko A, Prots I, Schulze-Koops H (2009) Prognostic factors in rheumatoid arthritis in the era of biologic agents. Nat Rev Rheumatol 5:491–496

    PubMed  CAS  Google Scholar 

  44. Ortutay Z, Polgar A, Gomor B, Geher P, Lakatos T, Glant T, Gay R, Gay S, Pallinger E, Farkas C, Farkas E, Tothfalusi L, Kocsis K, Falus A, Buzas E (2003) Synovial fluid exoglycosidases are predictors of rheumatoid arthritis and are effective in cartilage glycosaminoglycan depletion. Arthritis Rheum 48:2163–2172

    PubMed  CAS  Google Scholar 

  45. Pasztoi M, Nagy G, Geher P, Lakatos T, Toth K, Wellinger K, Pocza P, Gyorgy B, Holub M, Kittel A, Paloczy K, Mazan M, Nyirkos P, Falus A, Buzas E (2009) Gene expression and activity of cartilage degrading glycosidases in human rheumatoid arthritis and osteoarthritis synovial fibroblasts. Arthritis Res Ther 11:R68

    PubMed Central  PubMed  Google Scholar 

  46. Wigginton J, Cutler D, Abecasis G (2005) A note on exact tests of Hardy-Weinberg equilibrium. Am J Hum Genet 76:887–893

    PubMed Central  PubMed  CAS  Google Scholar 

  47. Marchini J, Howie B, Myers S, McVean G, Donnelly P (2007) A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39:906–913

    PubMed  CAS  Google Scholar 

  48. Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via EM algorithm. J Roy Stat Soc B Stat Methods 39:1–38

    Google Scholar 

  49. Tanner M, Wong W (2010) From EM to data augmentation: the emergence of MCMC Bayesian computation in the 1980s. Stat Sci 25:506–516

    Google Scholar 

  50. Gelman A (1995) Bayesian data analysis, 1st edn. Chapman & Hall, New York

    Google Scholar 

  51. Barrett J, Fry B, Maller J, Daly M (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    PubMed  CAS  Google Scholar 

  52. Zhang J, Rowe W, Struewing J, Buetow K (2002) HapScope: a software system for automated and visual analysis of functionally annotated haplotypes. Nucleic Acids Res 30:5213–5221

    PubMed Central  PubMed  CAS  Google Scholar 

  53. Gu S, Pakstis A, Kidd K (2005) HAPLOT: a graphical comparison of haplotype blocks, tagSNP sets and SNP variation for multiple populations. Bioinformatics 21:3938–3939

    PubMed  CAS  Google Scholar 

  54. Davidovich O, Kimmel G, Shamir R (2007) GEVALT: an integrated software tool for genotype analysis. BMC Bioinformatics 8:36

    PubMed Central  PubMed  Google Scholar 

  55. Stephens M, Smith N, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    PubMed Central  PubMed  CAS  Google Scholar 

  56. Mourad R, Sinoquet C, Leray P (2011) A hierarchical Bayesian network approach for linkage disequilibrium modeling and data-dimensionality reduction prior to genome-wide association studies. BMC Bioinformatics 12:16

    PubMed Central  PubMed  Google Scholar 

  57. Kost J, McDermott M (2002) Combining dependent P-values. Stat Probab Lett 60: 183–190

    Google Scholar 

  58. Zhang F, Guo X, Wu S, Han J, Liu Y, Shen H, Deng H (2012) Genome-wide pathway association studies of multiple correlated quantitative phenotypes using principle component analyses. PLoS One 7:e53320

    PubMed Central  PubMed  CAS  Google Scholar 

  59. Friedman N, Goldszmidt M (1996) Discretizing continuous attributes while learning Bayesian networks. In: Saitta L (ed) Thirteenth international conference on machine learning, (ICML ’96). Morgan Kaufmann, Bari, pp 157–165

    Google Scholar 

  60. Hullam G, Antal P (2013) The effect of parameter priors on Bayesian relevance and effect size measures. Periodica Polytechnica Electrical Engineering and Computer Science 57:35–48

    Google Scholar 

  61. Cooper G, Herskovits E (1992) A Bayesian method for the induction of probabilistic networks from data. Mach Learn 9:309–347

    Google Scholar 

  62. Silander T, Kontkanen P, Myllymaki P (2007) On sensitivity of the MAP Bayesian network structure to the equivalent sample size parameter. AUAI Press, Corvallis, OR, pp 360–367

    Google Scholar 

  63. Ueno M (2010) Learning networks determined by the ratio of prior and data. AUAI Press, Corvallis, OR, pp 598–605

    Google Scholar 

  64. Bouckaert RR (1994) Properties of Bayesian belief network learning algorithms. Morgan Kaufmann, San Francisco, CA, pp 102–109

    Google Scholar 

  65. Buntine WL (1991) Theory refinement on Bayesian networks. In: D’Ambrosio B, Smets P (eds.): UAI ‘91: Proceedings of the Seventh Annual Conference on Uncertainty in Artificial Intelligence, July 13-15, 1991, UCLA, Los Angeles, CA, USA, pp 52–60

    Google Scholar 

  66. Heckerman D, Geiger D, Chickering D (1995) Learning Bayesian networks—the combination of knowledge and statistical-data. Mach Learn 20:197–243

    Google Scholar 

  67. Giudici P, Castelo R (2003) Improving Markov Chain Monte Carlo model search for data mining. Mach Learn 50:127–158

    Google Scholar 

  68. Chen M-H, Shao Q-M, Ibrahim JG (2000) Monte Carlo methods in Bayesian computation. Springer, New York

    Google Scholar 

  69. Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann Publishers, San Mateo, CA

    Google Scholar 

  70. Kohavi R, John G (1997) Wrappers for feature subset selection. Artif Intell 97:273–324

    Google Scholar 

  71. Tsamardinos I, Aliferis C (2003) Towards Principled Feature Selection: Relevancy, Filters, and Wrappers. In: Bishop CM, Frey BJ (eds.) Proc. of the Ninth International Workshop on Artificial Intelligence and Statistics, January 3-6, 2003, Morgan Kaufmann Publishers, Key West, FL, USA, pp 334–342

    Google Scholar 

  72. O’Hara R, Sillanpaa M (2009) A review of Bayesian variable selection methods: what, how and which. Bayesian Anal 4:85–117

    Google Scholar 

  73. Kooperberg C, Ruczinski I (2005) Identifying interacting SNPs using Monte Carlo logic regression. Genet Epidemiol 28:157–170

    PubMed  Google Scholar 

  74. Ioannidis J (2008) Why most discovered true associations are inflated. Epidemiology 19: 640–648

    PubMed  Google Scholar 

  75. Hoeting JA, Madigan D, Raftery AE, Volinsky CT (1999) Bayesian model averaging: a tutorial. Stat Sci 14:382–417

    Google Scholar 

  76. Hullam G, Antal P (2012) Estimation of effect size posterior using model averaging over Bayesian network structures and parameters. In: The sixth European workshop on probabilistic graphical models (PGM2012), Granada, Spain

    Google Scholar 

  77. Stein L (2003) Integrating biological databases. Nat Rev Genet 4:337–345

    PubMed  CAS  Google Scholar 

  78. Ashburner M, Ball C, Blake J, Botstein D, Butler H, Cherry J, Davis A, Dolinski K, Dwight S, Eppig J, Harris M, Hill D, Issel-Tarver L, Kasarskis A, Lewis S, Matese J, Richardson J, Ringwald M, Rubin G, Sherlock G, The Gene Ontology Consortium (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    PubMed Central  PubMed  CAS  Google Scholar 

  79. Liekens A, De Knijf J, Daelemans W, Goethals B, De Rijk P, Del-Favero J (2011) BioGraph: unsupervised biomedical knowledge discovery via automated hypothesis generation. Genome Biol 12:R57

    PubMed Central  PubMed  Google Scholar 

  80. Glenisson P, Coessens B, Van Vooren S, Mathys J, Moreau Y, De Moor B (2004) TXTGate: profiling gene groups with text-based information. Genome Biol 5:R43

    PubMed Central  PubMed  Google Scholar 

  81. Kohler S, Bauer S, Horn D, Robinson P (2008) Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet 82:949–958

    PubMed Central  PubMed  Google Scholar 

  82. Lee I, Blom U, Wang P, Shim J, Marcotte E (2011) Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Res 21:1109–1121

    PubMed Central  PubMed  CAS  Google Scholar 

  83. Lanckriet G, De Bie T, Cristianini N, Jordan M, Noble W (2004) A statistical framework for genomic data fusion. Bioinformatics 20: 2626–2635

    PubMed  CAS  Google Scholar 

  84. De Bie T, Tranchevent L, Van Oeffelen L, Moreau Y (2007) Kernel-based data fusion for gene prioritization. Bioinformatics 23: I125–I132

    PubMed  Google Scholar 

  85. Bromberg Y (2013) Chapter 15: disease gene prioritization. PLoS Comput Biol 9:e1002902

    PubMed Central  PubMed  CAS  Google Scholar 

  86. Doncheva N, Kacprowski T, Albrecht M (2012) Recent approaches to the prioritization of candidate disease genes. Wiley Interdiscip Rev Syst Biol Med 4:429–442

    PubMed  CAS  Google Scholar 

  87. Magger O, Waldman Y, Ruppin E, Sharan R (2012) Enhancing the prioritization of disease-causing genes through tissue specific protein interaction networks. PLoS Comput Biol 8:e1002690

    PubMed Central  PubMed  CAS  Google Scholar 

  88. Navlakha S, Kingsford C (2010) The power of protein interaction networks for associating genes with diseases. Bioinformatics 26: 1057–1063

    PubMed Central  PubMed  CAS  Google Scholar 

  89. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    PubMed Central  PubMed  CAS  Google Scholar 

  90. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen L (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815

    PubMed Central  PubMed  CAS  Google Scholar 

  91. Prasad T, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan D, Sebastian A, Rani S, Ray S, Kishore C, Kanth S, Ahmed M, Kashyap M, Mohmood R, Ramachandra Y, Krishna V, Rahiman B, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A (2009) Human protein reference database-2009 update. Nucleic Acids Res 37:D767–D772

    CAS  Google Scholar 

  92. Edgar R, Domrachev M, Lash A (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    PubMed Central  PubMed  CAS  Google Scholar 

  93. McKusick-Nathans Institute for Genetic Medicine. Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University, Baltimore, MD. http://omim.org/

  94. Yu W, Gwinn M, Clyne M, Yesupriya A, Khoury M (2008) A navigator for human genome epidemiology. Nat Genet 40: 124–125

    PubMed  CAS  Google Scholar 

  95. Hindorff L, Sethupathy P, Junkins H, Ramos E, Mehta J, Collins F, Manolio T (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106:9362–9367

    PubMed Central  PubMed  CAS  Google Scholar 

  96. Arany A, Bolgar B, Balogh B, Antal P, Matyus P (2013) Multi-aspect candidates for repositioning: data fusion methods using heterogeneous information sources. Curr Med Chem 20:95–107

    PubMed  CAS  Google Scholar 

  97. Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, Gillette M, Paulovich A, Pomeroy S, Golub T, Lander E, Mesirov J (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550

    PubMed Central  PubMed  CAS  Google Scholar 

  98. Attia J, Ioannidis J, Thakkinstian A, McEvoy M, Scott R, Minelli C, Thompson J, Infante-Rivard C, Guyatt G (2009) How to use an article about genetic association a: background concepts. JAMA 301:74–81

    PubMed  CAS  Google Scholar 

  99. Attia J, Ioannidis J, Thakkinstian A, McEvoy M, Scott R, Minelli C, Thompson J, Infante-Rivard C, Guyatt G (2009) How to use an article about genetic association B: are the results of the study valid? JAMA 301:191–197

    PubMed  CAS  Google Scholar 

  100. Attia J, Ioannidis J, Thakkinstian A, McEvoy M, Scott R, Minelli C, Thompson J, Infante-Rivard C, Guyatt G (2009) How to use an article about genetic association C: what are the results and will they help me in caring for my patients? JAMA 301:304–308

    PubMed  CAS  Google Scholar 

  101. Huang J, Mirel D, Pugh E, Xing C, Robinson P, Pertsemlidis A, Ding L, Kozlitina J, Maher J, Rios J, Story M, Marthandan N, Scheuermann R (2011) Minimum information about a genotyping experiment (MIGEN). Stand Genomic Sci 5:224–229

    PubMed Central  PubMed  CAS  Google Scholar 

  102. Janssens A, Ioannidis J, van Duijn C, Little J, Khoury M, Grp G (2011) Strengthening the reporting of Genetic Risk Prediction Studies: the GRIPS statement. Genet Med 13:453–456

    PubMed  Google Scholar 

  103. Little J, Higgins J, Ioannidis J, Moher D, Gagnon F, von Elm E, Khoury M, Cohen B, Davey-Smith G, Grimshaw J, Scheet P, Gwinn M, Williamson R, Zou G, Hutchings K, Johnson C, Tait V, Wiens M, Golding J, van Duijn C, McLaughlin J, Paterson A, Wells G, Fortier I, Freedman M, Zecevic M, King R, Infante-Rivard C, Stewart A, Birkett N (2009) STrengthening the REporting of Genetic Association studies (STREGA)—an extension of the STROBE statement. Eur J Clin Invest 39:247–266

    PubMed Central  PubMed  Google Scholar 

  104. Ioannidis J, Khoury M (2011) Improving validation practices in “Omics” research. Science 334:1230–1232

    PubMed  CAS  Google Scholar 

  105. Colhoun H, McKeigue P, Smith G (2003) Problems of reporting genetic associations with complex outcomes. Lancet 361:865–872

    PubMed  Google Scholar 

  106. Shi G, Boerwinkle E, Morrison A, Gu C, Chakravarti A, Rao D (2011) Mining gold dust under the genome wide significance level: a two-stage approach to analysis of GWAS. Genet Epidemiol 35:111–118

    PubMed Central  PubMed  Google Scholar 

  107. Province M, Borecki I (2007) Gathering the gold dust: identification small-effect complex trait genes. Genet Epidemiol 31:611–612

    Google Scholar 

  108. Evangelou E, Ioannidis J (2013) Meta-analysis methods for genome-wide association studies and beyond. Nat Rev Genet 14:379–389

    PubMed  CAS  Google Scholar 

  109. Pers T, Hansen N, Lage K, Koefoed P, Dworzynski P, Miller M, Flint T, Mellerup E, Dam H, Andreassen O, Djurovic S, Melle I, Borglum A, Werge T, Purcell S, Ferreira M, Kouskoumvekaki I, Workman C, Hansen T, Mors O, Brunak S (2011) Meta-analysis of heterogeneous data sources for genome-scale identification of risk genes in complex phenotypes. Genet Epidemiol 35:318–332

    PubMed  Google Scholar 

  110. Little J, Higgins J, Ioannidis J, Moher D, Gagnon F, von Elm E, Khoury M, Cohen B, Davey-Smith G, Grimshaw J, Scheet P, Gwinn M, Williamson R, Zou G, Hutchings K, Johnson C, Tait V, Wiens M, Golding J, van Duijn C, McLaughlin J, Paterson A, Wells G, Fortier I, Freedman M, Zecevic M, King R, Infante-Rivard C, Stewart A, Birkett N (2009) Strengthening the reporting of genetic association studies (STREGA): an extension of the STROBE Statement. Hum Genet 125:131–151

    PubMed  Google Scholar 

  111. Shotton D (2009) Semantic publishing: the coming revolution in scientific journal publishing. Learn Publish 22:85–94

    Google Scholar 

  112. Shotton D, Portwin K, Klyne G, Miles A (2009) Adventures in semantic publishing: exemplar semantic enhancements of a research article. PLoS Comput Biol 5:e1000361

    PubMed Central  PubMed  Google Scholar 

  113. Seringhaus M, Gerstein M (2008) Manually structured digital abstracts: a scaffold for automatic text mining. FEBS Lett 582:1170

    PubMed  CAS  Google Scholar 

  114. Gerstein M, Seringhaus M, Fields S (2007) Structured digital abstract makes text mining easy. Nature 447:142

    PubMed  CAS  Google Scholar 

  115. Seringhaus M, Gerstein M (2007) Publishing perishing? Towards tomorrow’s information architecture. BMC Bioinformatics 8:17

    PubMed Central  PubMed  Google Scholar 

  116. Bourne P (2005) Will a biological database be different from a biological journal? PLoS Comput Biol 1:179–181

    PubMed  CAS  Google Scholar 

  117. Gerstein M (1999) E-publishing on the web: promises, pitfalls, and payoffs for bioinformatics. Bioinformatics 15:429–431

    PubMed  CAS  Google Scholar 

  118. Goddard K, Knaus W, Whitlock E, Lyman G, Feigelson H, Schully S, Ramsey S, Tunis S, Freedman A, Khoury M, Veenstra D (2012) Building the evidence base for decision making in cancer genomic medicine using comparative effectiveness research. Genet Med 14:633–642

    PubMed Central  PubMed  Google Scholar 

  119. Gwinn M, Grossniklaus D, Yu W, Melillo S, Wulf A, Flome J, Dotson W, Khoury M (2011) Horizon scanning for new genomic tests. Genet Med 13:161–165

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Antal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hullám, G. et al. (2014). Bayesian Systems-Based Genetic Association Analysis with Effect Strength Estimation and Omic Wide Interpretation: A Case Study in Rheumatoid Arthritis. In: Shiozawa, S. (eds) Arthritis Research. Methods in Molecular Biology, vol 1142. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0404-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0404-4_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0403-7

  • Online ISBN: 978-1-4939-0404-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics