Skip to main content

Quantitative Geometric Three-Dimensional Reconstruction of Neuronal Architecture and Mapping of Labeled Proteins from Confocal Image Stacks

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 87))

Abstract

Neuronal dendrites are amazingly complex structures which provide the scaffold for neuronal connectivity and information flow through circuits. On the one hand the projection area, surface, number, and density of branches determine which and how many other neurons can form synaptic connections with a neuron. On the other hand dendritic structure has profound effects on the computation of synaptic input. This chapter describes a tool kit to create three-dimensional geometric reconstructions of neuronal dendrites from confocal laser scanning image stacks. These tools allow for a comprehensive three-dimensional visualization of dendritic structure and provide quantitative measures of dendritic structure and branching topology which are readily available for statistical analysis. In addition, second and third channel image data can be mapped onto dendritic surface reconstructions to derive distribution estimates of putative synapses or other proteins in entire dendritic trees. These geometric dendrite reconstructions and protein localizations can be exported as multi-compartment models to the NEURON modeling environment such that structure-function relationships can be explored computationally and hypothesis formed for further experimental validation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Golgi C (1873) Sulla struttura della sostanza grigia del cervello (Comunicazione preventiva) Gazzetta Medica Italiana. Lombardia 33(1873): 244–246

    Google Scholar 

  2. Cajal Ramon y (1897) Las leyes de la morfologia y dinamismo de las celulas nerviosas. Revista Trim. Microgr.1

    Google Scholar 

  3. Finger S (2001) Origins of neuroscience: a history of explorations into brain function. Oxford University Press, NY, USA

    Google Scholar 

  4. Shepherd GM (1991) Foundations of the neuron doctrine. Oxford University Press, NY, USA

    Google Scholar 

  5. Bullock TH, Bennett MV, Johnston D, Josephson R, Marder E, Fields RD (2005) Neuroscience. The neuron doctrine, redux. Science 310(5749):791–793

    Article  CAS  PubMed  Google Scholar 

  6. Cline HT (2001) Dendritic arbor development and synaptogenesis. Curr Opin Neurobiol 11(1):118–126

    Article  CAS  PubMed  Google Scholar 

  7. Libersat F, Duch C (2004) Mechanisms of dendritic maturation. Mol Neurobiol 29(3): 303–320

    Article  CAS  PubMed  Google Scholar 

  8. Jan YN, Jan LY (2010) Branching out: mechanisms of dendritic arborization. Nat Rev Neurosci 11:316–328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Koch C, Segev I (2000) The role of single neurons in information processing. Nat Neurosci 3(Suppl):1171–1177

    Article  CAS  PubMed  Google Scholar 

  10. London M, Haeusser M (2005) Dendritic computation. Annu Rev Neurosci 28:503–532

    Article  CAS  PubMed  Google Scholar 

  11. Kaufmann WE, Moser HW (2000) Dendritic anomalies in disorders associated with mental retardation. Cereb Cortex 10:981–991

    Article  CAS  PubMed  Google Scholar 

  12. Walsh CA, Morrow EM, Rubenstein JL (2008) Autism and brain development. Cell 135:396–400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kelleher RJ III, Bear MF (2008) The autistic neuron: troubled translation? Cell 135:401–406

    Article  CAS  PubMed  Google Scholar 

  14. Bagni C, Greenough WT (2005) From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nat Rev Neurosci 6:376–387

    Article  CAS  PubMed  Google Scholar 

  15. Ramocki MB, Zoghbi HY (2008) Failure of neuronal homeostasis results in common neuropsychiatric phenotypes. Nature 455:912–918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Dindot SV, Antalffy BA, Bhattacharjee MB, Beaudet al (2008) The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum Mol Genet 17:111–118

    Article  CAS  PubMed  Google Scholar 

  17. Garey LJ et al (1998) Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry 65:446–453

    Article  CAS  PubMed  Google Scholar 

  18. Denk W, Horstmann H (2004) Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2(11):e329

    Article  PubMed Central  PubMed  Google Scholar 

  19. Caroni P, Donato F, Muller D (2012) Structural plasticity upon learning: regulation and functions. Nat Rev Neurosci 13:478–490

    Article  CAS  PubMed  Google Scholar 

  20. Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10:647–658

    Article  CAS  PubMed  Google Scholar 

  21. Beck H, Yaari Y (2008) Plasticity of intrinsic neuronal properties in CNS disorders. Nat Rev Neurosci 9:357–369

    Article  CAS  PubMed  Google Scholar 

  22. Carew TJ, Menzel R, Shatz CJ (1998) Mechanistic relationships between development and learning. Dahlem Workshop Reports. Wiley, ISBN 978-0-471-97702-5

    Google Scholar 

  23. Ribrault C, Sekimoto K, Triller A (2011) From the stochasticity of molecular processes to the variability of synaptic transmission. Nat Rev Neurosci 12:375–387

    Article  CAS  PubMed  Google Scholar 

  24. Hohensee S, Bleiss W, Duch C (2008) Correlative electron and confocal microscopy assessment of synapse localization in the central nervous system of an insect. J Neurosci Methods 168(1):64–70

    Article  PubMed  Google Scholar 

  25. Duch C, Mentel T (2004) Activity affects dendritic shape and synapse elimination during steroid controlled dendritic retraction in Manduca sexta. J Neurosci 24(44):9826–9837

    Article  CAS  PubMed  Google Scholar 

  26. Evers JF, Münch D, Duch C (2006) Developmental relocation of presynaptic terminals along distinct types of dendritic filopodia. Dev Biol 297(1):214–227

    Article  CAS  PubMed  Google Scholar 

  27. Mauss A, Tripodi M, Evers JF, Landgraf M (2009) Midline signalling systems direct the formation of a neural map by dendritic targeting in the Drosophila motor system. PLoS Biol 7(9):e1000200

    Article  PubMed Central  PubMed  Google Scholar 

  28. Meseke M, Evers JF, Duch C (2009) Developmental changes in dendritic shape and synapse location tune single-neuron computations to changing behavioral functions. J Neurophysiol 102(1):41–58

    Article  PubMed  Google Scholar 

  29. Kühn C, Duch C (2013) Putative excitatory and putative inhibitory inputs are localised in different dendritic domains in a Drosophila flight motoneuron. Eur J Neurosci 37(6):860–875

    Article  Google Scholar 

  30. Segev I, London M (2000) Untangling dendrites with quantitative models. Science 290(5492):744–750

    Article  CAS  PubMed  Google Scholar 

  31. Rall W (1964) Theoretical significance of dendritic trees for neuronal input-output relations. In: Reiss R (ed) Neural theory and modeling. Stanford University Press, Stanford, CA, pp 73–97

    Google Scholar 

  32. Stuart G, Schiller J, Sakmann B (1997) Action potential initiation and propagation in rat neocortical pyramidal neurons. J Physiol 505: 617–632

    Article  CAS  PubMed  Google Scholar 

  33. Williams SR (2004) Spatial compartmentalization and functional impact of conductance in pyramidal neurons. Nat Neurosci 7:961–967

    Article  CAS  PubMed  Google Scholar 

  34. Migliore M, Shepherd GM (2002) Emerging rules for the distributions of active dendritic conductances. Nat Rev Neurosci 3:362–370

    Article  CAS  PubMed  Google Scholar 

  35. Evers JF, Schmitt S, Sibilia M, Duch C (2005) Progress in functional neuroanatomy: precise automatic geometric reconstruction of neuronal morphology from confocal image stacks. J Neurophysiol 93(4):2331–2342

    Article  CAS  PubMed  Google Scholar 

  36. Hines ML, Carneval NT (1997) The NEURON simulation environment. Neuroscientist 7(2):123–135

    Article  Google Scholar 

  37. Hines ML, Carneval NT (2001) NEURON: a tool for neuroscientists. Neural Comput 9(6):11179–11209

    Google Scholar 

  38. Ryglewski S, Duch C (2009) Shaker and Shal mediate transient calcium-independent potassium current in a Drosophila flight motoneuron. J Neurophysiol 102(6):3673–3688

    Article  CAS  PubMed  Google Scholar 

  39. Cuntz H, Borst A, Segev I (2007) Optimization principles of dendritic structure. Theor Biol Med Model 4:21

    Article  PubMed Central  PubMed  Google Scholar 

  40. Fayyazuddin A, Zaheer MA, Hiesinger PR, Bellen HJ (2006) The nicotinic acetylcholine receptor Dalpha7 is required for an escape behavior in Drosophila. PLoS Biol 4(3):e63

    Article  PubMed Central  PubMed  Google Scholar 

  41. Su H, O'Dowd DK (2003) Fast synaptic currents in Drosophila mushroom body Kenyon cells are mediated by alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors and picrotoxin-sensitive GABA receptors. J Neurosci 23(27): 9246–9253

    CAS  PubMed  Google Scholar 

  42. Gu H, O'Dowd DK (2006) Cholinergic synaptic transmission in adult Drosophila Kenyon cells in situ. J Neurosci 26(1):265–272

    Article  CAS  PubMed  Google Scholar 

  43. Gouwens NW, Wilson RI (2009) Signal propagation in Drosophila central neurons. J Neurosci 29(19):6239–6249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Vonhoff F, Kuehn C, Blumenstock S, Sanyal S, Duch C (2013) Temporal coherency between receptor expression, neural activity and AP-1-dependent transcription regulates Drosophila motoneuron dendrite development. Development 140(3):606–616

    Article  CAS  PubMed  Google Scholar 

  45. Vonhoff F, Williams A, Ryglewski S, Duch C (2012) Drosophila as a model for MECP2 gain of function in neurons. PLoS One 7(2): e31835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Schmitt S, Evers JF, Duch C, Scholz M, Obermayer K (2004) New methods for the computer assisted 3-D reconstruction of neurons from confocal image stacks. Neuroimage 23(4):1283–1298

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Evers, J.F., Duch, C. (2014). Quantitative Geometric Three-Dimensional Reconstruction of Neuronal Architecture and Mapping of Labeled Proteins from Confocal Image Stacks. In: Bakota, L., Brandt, R. (eds) Laser Scanning Microscopy and Quantitative Image Analysis of Neuronal Tissue. Neuromethods, vol 87. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0381-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0381-8_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0380-1

  • Online ISBN: 978-1-4939-0381-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics