Skip to main content

Assessing the Quality of Modelled 3D Protein Structures Using the ModFOLD Server

  • Protocol
  • First Online:
Protein Structure Prediction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1137))

Abstract

Model quality assessment programs (MQAPs) aim to assess the quality of modelled 3D protein structures. The provision of quality scores, describing both global and local (per-residue) accuracy are extremely important, as without quality scores we are unable to determine the usefulness of a 3D model for further computational and experimental wet lab studies.

Here, we briefly discuss protein tertiary structure prediction, along with the biennial Critical Assessment of Techniques for Protein Structure Prediction (CASP) competition and their key role in driving the field of protein model quality assessment methods (MQAPs). We also briefly discuss the top MQAPs from the previous CASP competitions. Additionally, we describe our downloadable and webserver-based model quality assessment methods: ModFOLD3, ModFOLDclust, ModFOLDclustQ, ModFOLDclust2, and IntFOLD-QA. We provide a practical step-by-step guide on using our downloadable and webserver-based tools and include examples of their application for improving tertiary structure prediction, ligand binding site residue prediction, and oligomer predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roche DB, Buenavista MT, McGuffin LJ (2012) FunFOLDQA: a quality assessment tool for protein-ligand binding site residue predictions. PLoS One 7(5):e38219. doi:10.1371/journal.pone.0038219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Roche DB, Buenavista MT, McGuffin LJ (2012) Predicting protein structures and structural annotation of proteomes. In: Roberts GCK (ed) Encyclopedia of biophysics, vol 1. Springer, Berlin

    Google Scholar 

  3. McGuffin LJ (2010) Model quality prediction. In: Rangwala H, Karypis G (eds) Protein structure prediction: methods and algorithms. Wiley, New York, pp 323–342

    Google Scholar 

  4. McGuffin LJ, Roche DB (2011) Automated tertiary structure prediction with accurate local model quality assessment using the IntFOLD-TS method. Proteins 79 Suppl 10:137–146. doi:10.1002/prot.23120

  5. McGuffin LJ (2007) Benchmarking consensus model quality assessment for protein fold recognition. BMC Bioinformatics 8:345. doi:10.1186/1471-2105-8-345

    Article  PubMed Central  PubMed  Google Scholar 

  6. McGuffin LJ (2008) The ModFOLD server for the quality assessment of protein structural models. Bioinformatics 24(4):586–587. doi:10.1093/bioinformatics/btn014

    Article  CAS  PubMed  Google Scholar 

  7. McGuffin LJ, Roche DB (2010) Rapid model quality assessment for protein structure predictions using the comparison of multiple models without structural alignments. Bioinformatics 26(2):182–188. doi:10.1093/bioinformatics/btp629

    Article  CAS  PubMed  Google Scholar 

  8. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. McGuffin LJ (2008) Protein fold recognition and threading. In: Schwede T, Peitsch MC (eds) Computational structural biology. World Scientific, London, pp 37–60

    Google Scholar 

  10. Lee J, Wu S, Zhang Y (2009) Ab initio protein structure prediction. In: Rigden DJ (ed) From protein structure to function with bioinformatics. Springer, London, pp 1–26

    Google Scholar 

  11. Laskowski RA, Moss DS, Thornton JM (1993) Main-chain bond lengths and bond angles in protein structures. J Mol Biol 231(4):1049–1067. doi:10.1006/jmbi.1993.1351

    Article  CAS  PubMed  Google Scholar 

  12. Hooft RW, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381(6580):272. doi:10.1038/381272a0

    Article  CAS  PubMed  Google Scholar 

  13. Davis IW, Murray LW, Richardson JS, Richardson DC (2004) MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res 32(Web Server issue):W615–W619. doi:10.1093/nar/gkh398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Melo F, Devos D, Depiereux E, Feytmans E (1997) ANOLEA: a www server to assess protein structures. Proc Int Conf Intell Syst Mol Biol 5:187–190

    CAS  PubMed  Google Scholar 

  15. Melo F, Feytmans E (1997) Novel knowledge-based mean force potential at atomic level. J Mol Biol 267(1):207–222. doi:10.1006/jmbi.1996.0868

    Article  CAS  PubMed  Google Scholar 

  16. Zhou H, Zhou Y (2002) Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci 11(11):2714–2726. doi:10.1110/ps.0217002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4(2):187–217. doi:10.1002/jcc.540040211

    Article  CAS  Google Scholar 

  18. Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106(3):765–784. doi:10.1021/ja00315a051

    Article  CAS  Google Scholar 

  19. Moult J, Fidelis K, Kryshtafovych A, Rost B, Tramontano A (2009) Critical assessment of methods of protein structure prediction—round VIII. Proteins 77 Suppl 9:1–4. doi:10.1002/prot.22589

    Google Scholar 

  20. Cozzetto D, Kryshtafovych A, Ceriani M, Tramontano A (2007) Assessment of predictions in the model quality assessment category. Proteins 69 Suppl 8:175–183. doi:10.1002/prot.21669

    Google Scholar 

  21. Kryshtafovych A, Fidelis K, Tramontano A (2011) Evaluation of model quality predictions in CASP9. Proteins Struct Funct Bioinformatics (79 Suppl 10):96–106. doi:10.1002/prot.23180

  22. Roche DB, Buenavista MT, Tetchner SJ, McGuffin LJ (2011) The IntFOLD server: an integrated web resource for protein fold recognition, 3D model quality assessment, intrinsic disorder prediction, domain prediction and ligand binding site prediction. Nucleic Acids Res 39(Web Server issue):W171–W176. doi:10.1093/nar/gkr184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27(3):343–350. doi:10.1093/bioinformatics/btq662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kalman M, Ben-Tal N (2010) Quality assessment of protein model-structures using evolutionary conservation. Bioinformatics 26(10):1299–1307. doi:10.1093/bioinformatics/btq114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Cozzetto D, Kryshtafovych A, Tramontano A (2009) Evaluation of CASP8 model quality predictions. Proteins 77 Suppl 9:157–166. doi:10.1002/prot.22534

    Google Scholar 

  26. Zhang Y, Skolnick J (2004) Scoring function for automated assessment of protein structure template quality. Proteins 57(4):702–710. doi:10.1002/prot.20264

    Article  CAS  PubMed  Google Scholar 

  27. Ben-David M, Noivirt-Brik O, Paz A, Prilusky J, Sussman JL, Levy Y (2009) Assessment of CASP8 structure predictions for template free targets. Proteins 77 Suppl 9:50–65. doi:10.1002/prot.22591

    Google Scholar 

  28. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Jones DT, Swindells MB (2002) Getting the most from PSI-BLAST. Trends Biochem Sci 27(3):161–164

    Article  CAS  PubMed  Google Scholar 

  30. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16(4):404–405

    Article  CAS  PubMed  Google Scholar 

  31. Soding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21(7):951–960. doi:10.1093/bioinformatics/bti125

    Article  PubMed  Google Scholar 

  32. Remmert M, Biegert A, Hauser A, Soding J (2012) HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods 9(2):173–175. doi:10.1038/nmeth.1818

    Article  CAS  Google Scholar 

  33. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2006) Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics Chapter 5:Unit 5 6. doi:10.1002/0471250953.bi0506s15

  34. Buenavista MT, Roche DB, McGuffin LJ (2012) Improvement of 3D protein models using multiple templates guided by single-template model quality assessment. Bioinformatics 28(14):1851–1857. doi:10.1093/bioinformatics/bts292

    Article  CAS  PubMed  Google Scholar 

  35. McGuffin LJ (2008) Intrinsic disorder prediction from the analysis of multiple protein fold recognition models. Bioinformatics 24(16):1798–1804. doi:10.1093/bioinformatics/btn326

    Article  CAS  PubMed  Google Scholar 

  36. Monastyrskyy B, Fidelis K, Moult J, Tramontano A, Kryshtafovych A (2011) Evaluation of disorder predictions in CASP9. Proteins 79 Suppl 10:107–118. doi:10.1002/prot.23161

    Google Scholar 

  37. Alexandrov N, Shindyalov I (2003) PDP: protein domain parser. Bioinformatics 19(3):429–430

    Article  CAS  PubMed  Google Scholar 

  38. Roche DB, Tetchner SJ, McGuffin LJ (2011) FunFOLD: an improved automated method for the prediction of ligand binding residues using 3D models of proteins. BMC Bioinformatics 12:160. doi:10.1186/1471-2105-12-160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Schmidt T, Haas J, Gallo Cassarino T, Schwede T (2011) Assessment of ligand-binding residue predictions in CASP9. Proteins 79 Suppl 10:126–136. doi:10.1002/prot.23174

    Google Scholar 

  40. Matthews BW (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 405(2):442–451

    Article  CAS  PubMed  Google Scholar 

  41. Roche DB, Tetchner SJ, McGuffin LJ (2010) The binding site distance test score: a robust method for the assessment of predicted protein binding sites. Bioinformatics 26(22):2920–2921. doi:10.1093/bioinformatics/btq543

    Article  CAS  PubMed  Google Scholar 

  42. Rajasekaran MB, Nilapwar S, Andrews SC, Watson KA (2010) EfeO-cupredoxins: major new members of the cupredoxin superfamily with roles in bacterial iron transport. Biometals 23(1):1–17. doi:10.1007/s10534-009-9262-z

    Article  CAS  PubMed  Google Scholar 

  43. Eliahoo E, Ben Yosef R, Perez-Cano L, Fernandez-Recio J, Glaser F, Manor H (2010) Mapping of interaction sites of the Schizosaccharomyces pombe protein Translin with nucleic acids and proteins: a combined molecular genetics and bioinformatics study. Nucleic Acids Res 38(9):2975–2989. doi:10.1093/nar/gkp1230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Wei T, Gong J, Jamitzky F, Heckl WM, Stark RW, Rossle SC (2009) Homology modeling of human Toll-like receptors TLR7, 8, and 9 ligand-binding domains. Protein Sci 18(8):1684–1691. doi:10.1002/pro.186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Gong J, Wei T, Stark RW, Jamitzky F, Heckl WM, Anders HJ, Lech M, Rossle SC (2010) Inhibition of Toll-like receptors TLR4 and 7 signaling pathways by SIGIRR: a computational approach. J Struct Biol 169(3):323–330. doi:10.1016/j.jsb.2009.12.007

    Article  CAS  PubMed  Google Scholar 

  46. Fuller SJ, McGuffin LJ, Marshall AK, Giraldo A, Pikkarainen S, Clerk A, Sugden PH (2012) A novel non-canonical mechanism of regulation of MST3 (mammalian Sterile20-related kinase 3). Biochem J 442(3):595–610. doi:10.1042/BJ20112000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Bindschedler LV, McGuffin LJ, Burgis TA, Spanu PD, Cramer R (2011) Proteogenomics and in silico structural and functional annotation of the barley powdery mildew Blumeria graminis f. sp. hordei. Methods 54(4):432–441. doi:10.1016/j.ymeth.2011.03.006

    Article  CAS  PubMed  Google Scholar 

  48. Pawlowski M, Gajda MJ, Matlak R, Bujnicki JM (2008) MetaMQAP: a meta-server for the quality assessment of protein models. BMC Bioinformatics 9:403. doi:10.1186/1471-2105-9-403

    Article  PubMed Central  PubMed  Google Scholar 

  49. Wang Q, Vantasin K, Xu D, Shang Y (2011) MUFOLD-WQA: a new selective consensus method for quality assessment in protein structure prediction. Proteins 79 Suppl 10:185–195. doi:10.1002/prot.23185

    Google Scholar 

  50. Cheng J, Li J, Wang Z, Eickholt J, Deng X (2012) The MULTICOM toolbox for protein structure prediction. BMC Bioinformatics 13:65. doi:10.1186/1471-2105-13-65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Larsson P, Skwark MJ, Wallner B, Elofsson A (2009) Assessment of global and local model quality in CASP8 using Pcons and ProQ. Proteins 77 Suppl 9:167–172. doi:10.1002/prot.22476

    Google Scholar 

  52. Benkert P, Kunzli M, Schwede T (2009) QMEAN server for protein model quality estimation. Nucleic Acids Res 37(Web Server issue):W510–W514. doi:10.1093/nar/gkp322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Benkert P, Schwede T, Tosatto SC (2009) QMEANclust: estimation of protein model quality by combining a composite scoring function with structural density information. BMC Struct Biol 9:35. doi:10.1186/1472-6807-9-35

    Article  PubMed Central  PubMed  Google Scholar 

  54. Benkert P, Tosatto SC, Schomburg D (2008) QMEAN: a comprehensive scoring function for model quality assessment. Proteins 71(1):261–277. doi:10.1002/prot.21715

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

University of Reading Faculty Studentship, MRC Harwell and the Diamond Light Source Ltd. (to. M.T.B.). This research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement No. 246556 (to D.B.R.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Roche, D.B., Buenavista, M.T., McGuffin, L.J. (2014). Assessing the Quality of Modelled 3D Protein Structures Using the ModFOLD Server. In: Kihara, D. (eds) Protein Structure Prediction. Methods in Molecular Biology, vol 1137. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0366-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0366-5_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0365-8

  • Online ISBN: 978-1-4939-0366-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics