Skip to main content

Modeling Protein–Protein Complexes Using the HADDOCK Webserver “Modeling Protein Complexes with HADDOCK”

  • Protocol
  • First Online:
Book cover Protein Structure Prediction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1137))

Abstract

Protein–protein interactions lie at the heart of most cellular processes. Determining their high-resolution structures by experimental methods is a nontrivial task, which is why complementary computational approaches have been developed over the years. To gain structural and dynamical insight on an atomic scale in these interactions, computational modeling must often be complemented by low-resolution experimental information. For this purpose, we developed the user-friendly HADDOCK webserver, the interface to our biomolecular docking program, which can make use of a variety of low-resolution data to drive the docking process. In this chapter, we explain the use of the HADDOCK webserver based on the real-life Lys48-linked di-ubiquitin case, which led to the 2BGF PDB model. We demonstrate the use of chemical shift perturbation data in combination with residual dipolar couplings and further highlight a few other cases where our software was successfully used. The HADDOCK webserver is available to the science community for free at haddock.science.uu.nl/services/HADDOCK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stumpf MPH, Thorne T, de Silva E et al (2008) Estimating the size of the human interactome. Proc Natl Acad Sci USA 105: 6959–6964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Moreira IS, Fernandes PA, Ramos MJ (2010) Protein-protein docking dealing with the unknown. J Comput Chem 31:317–342

    CAS  PubMed  Google Scholar 

  3. Dominguez C, Boelens R, Bonvin AMJJ (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125: 1731–1737

    Article  CAS  PubMed  Google Scholar 

  4. de Vries SJ, van Dijk ADJ, Krzeminski M et al (2007) HADDOCK versus HADDOCK: new features and performance of HADDOCK2.0 on the CAPRI targets. Proteins 69:726–733

    Article  PubMed  Google Scholar 

  5. van Dijk ADJ, Fushman D, Bonvin AMJJ (2005) Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data. Proteins 60:367–381

    Article  PubMed  Google Scholar 

  6. van Dijk ADJ, Kaptein R, Boelens R et al (2006) Combining NMR relaxation with chemical shift perturbation data to drive protein-protein docking. J Biomol NMR 34: 237–244

    Article  PubMed  Google Scholar 

  7. Schmitz C, Bonvin AMJJ (2011) Protein-protein HADDocking using exclusively pseudocontact shifts. J Biomol NMR 50:263–266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Karaca E, Bonvin AMJJ (2013) On the usefulness of ion-mobility mass spectrometry and SAXS data in scoring docking decoys. Acta Crystallogr D Biol Crystallogr 69:683–694

    Article  CAS  PubMed  Google Scholar 

  9. van Dijk ADJ, Bonvin AMJJ (2006) Solvated docking: introducing water into the modelling of biomolecular complexes. Bioinformatics 22: 2340–2347

    Article  PubMed  Google Scholar 

  10. Janin J (2005) Assessing predictions of protein-protein interaction: the CAPRI experiment. Protein Sci 14:278–283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lensink MF, Wodak SJ (2013) Docking, scoring and affinity prediction in CAPRI. Proteins 81:2082–2095

    Google Scholar 

  12. Varadan R, Walker O, Pickart C et al (2002) Structural properties of polyubiquitin chains in solution. J Mol Biol 324:637–647

    Article  CAS  PubMed  Google Scholar 

  13. Brünger AT, Adams PD, Clore GM et al (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921

    Article  PubMed  Google Scholar 

  14. Brünger AT (2007) Version 1.2 of the crystallography and NMR system. Nat Protoc 2:2728–2733

    Article  PubMed  Google Scholar 

  15. de Vries SJ, van Dijk M, Bonvin AMJJ (2010) The HADDOCK web server for data-driven biomolecular docking. Nat Protoc 5:883–897

    Article  PubMed  Google Scholar 

  16. Wassenaar T, van Dijk ADJ, van Dijk M et al (2012) WeNMR: structural biology on the grid. J Grid Comp 10:743–767

    Article  Google Scholar 

  17. de Vries SJ, Bonvin AMJJ (2011) CPORT: a consensus interface predictor and its performance in prediction-driven docking with HADDOCK. PLoS One 6:e17695

    Article  PubMed Central  PubMed  Google Scholar 

  18. Rodrigues JPGLM, Melquiond ASJ, Karaca E et al (2013) Defining the limits of homology modelling in information-driven protein docking. Proteins 81:2119–2128

    Google Scholar 

  19. Krzeminski M, Loth K, Boelens R et al (2010) SAMPLEX: automatic mapping of perturbed and unperturbed regions of proteins and complexes. BMC Bioinformatics 11:51

    Article  PubMed Central  PubMed  Google Scholar 

  20. Meiler J, Blomberg N, Nilges M et al (2000) A new approach for applying residual dipolar couplings as restraints in structure elucidation. J Biomol NMR 16:245–252

    Article  CAS  PubMed  Google Scholar 

  21. Rodrigues JPGLM, Trellet M, Schmitz C et al (2012) Clustering biomolecular complexes by residue contacts similarity. Proteins 80: 1810–1817

    CAS  PubMed  Google Scholar 

  22. Schneider T, Kruse T, Wimmer R et al (2010) Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science 328:1168–1172

    Article  CAS  PubMed  Google Scholar 

  23. Janin J (2013) The targets of CAPRI rounds 20-27. Proteins 81:2075–2081

    Google Scholar 

  24. Lensink MF, Méndez R, Wodak SJ (2007) Docking and scoring protein complexes: CAPRI 3rd edition. Proteins 69:704–718

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support from the Dutch Foundation for Scientific Research (NWO) (ECHO grant no. 711.011.009 and VICI grant no. 700.56.442) and the European Union (FP7 e-Infrastructure grant WeNMR no. 261572) is acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

van Zundert, G.C.P., Bonvin, A.M.J.J. (2014). Modeling Protein–Protein Complexes Using the HADDOCK Webserver “Modeling Protein Complexes with HADDOCK”. In: Kihara, D. (eds) Protein Structure Prediction. Methods in Molecular Biology, vol 1137. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0366-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0366-5_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0365-8

  • Online ISBN: 978-1-4939-0366-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics