Skip to main content

Applications of Chitosan Nanoparticles in Drug Delivery

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1141))

Abstract

We have reviewed the binding affinities of several antitumor drugs doxorubicin (Dox), N-(trifluoroacetyl) doxorubicin (FDox), tamoxifen (Tam), 4-hydroxytamoxifen (4-Hydroxytam), and endoxifen (Endox) with chitosan nanoparticles of different sizes (chitosan-15, chitosan-100, and chitosan-200 KD) in order to evaluate the efficacy of chitosan nanocarriers in drug delivery systems. Spectroscopic and molecular modeling studies showed the binding sites and the stability of drug–polymer complexes. Drug–chitosan complexation occurred via hydrophobic and hydrophilic contacts as well as H-bonding network. Chitosan-100 KD was the more effective drug carrier than the chitosan-15 and chitosan-200 KD.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

Ch:

Chitosan

Dox:

Doxorubicin

FDox:

N-(trifluoroacetyl) doxorubicin

Tam:

Tamoxifen

4-Hydroxytam:

4-Hydroxytamoxifen

Endox:

Endoxifen

PEG:

Poly(ethylene glycol)

FTIR:

Fourier transform infrared

References

  1. Agudelo D, Nafisi S, Tajmir-Riahi HA (2013) Encapsulation of milk beta-lactoglobulin by chitosan nanoparticles. J Phys Chem B 117:6403–6409

    Article  CAS  Google Scholar 

  2. Amidi M, Mastrobattista E, Jiskoot W, Hennink WE (2010) Chitosan- based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev 62:59–82

    Article  CAS  Google Scholar 

  3. Gan Q, Wang T (2007) Chitosan nanoparticles as protein delivery carrier-systematic examination of fabrication conditions for efficient loading and release. Colloids Surf B: Biointerfaces 59:24–34

    Article  CAS  Google Scholar 

  4. Pacheco N, Gamica-Gonzalez M, Gimeno M, Barzana E, Trombotto S, David L, Shirai K (2011) Structural characterization of chitin and chitosan obtained by biological and chemical methods. Biomacromolecules 12:3285–3290

    Article  CAS  Google Scholar 

  5. Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: application and mode of action. Biomacromolecules 4:1457–1465

    Article  CAS  Google Scholar 

  6. Dang JM, Leong KW (2006) Natural polymers for gene delivery and tissue engineering. Adv Drug Deliv Rev 58:487–499

    Article  CAS  Google Scholar 

  7. Mao S, Shuai X, Unger F, Simon M, Bi D, Kissel T (2004) The depolymerization of chitosan: effects on physicochemical and biological properties. Int J Pharm 281:45–54

    Article  CAS  Google Scholar 

  8. Saranya N, Moorthi A, Saravanan S, Pandima Devi M, Selvamurugan N (2011) Chitosan and its derivatives for gene delivery. Int J Biol Macromol 49:234–238

    Article  Google Scholar 

  9. Shu Z, Zhu K (2000) A novel approach to prepare tripolyphosphate:chitosan complex beads for controlled release drug delivery. Int J Pharm 201:51–58

    Article  CAS  Google Scholar 

  10. Souza KS, Gonc-alves MDP, Gomez J (2011) Effect of chitosan degradation on its interaction with β-lactoglobulin. Biomacromolecules 12:1015–1029

    Article  CAS  Google Scholar 

  11. Sanyakamdhorn S, Agudelo D, Tajmir-Riahi HA (2013) Encapsulation of antitumor drug doxorubicin and its analogue by chitosan nanoparticles. Biomacromolecules 14:557–563

    Article  CAS  Google Scholar 

  12. Agudelo D, Sanyakamdhorn S, Nafisi S, Tajmir-Riahi HA (2013) Transporting antitumor drug tamoxifen and its metabolites, 4-hydroxytamoxifen and endoxifen by chitosan nanoparticles. PLoS ONE 8(1–11):e60250

    Article  CAS  Google Scholar 

  13. Bowman K, Leong KW (2006) Chitosan nanoparticles for oral drug and gene delivery. Int J Nanomedicine 1:117–128

    Article  CAS  Google Scholar 

  14. Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS, Moreira PI (2009) Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem 16:3267–3285

    Article  CAS  Google Scholar 

  15. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229

    Article  CAS  Google Scholar 

  16. Turner A, Li LC, Pilli T, Qian L, Wiley EL, Setty S, Christov K, Ganesh L, Maker AV, Li P, Kanteti P, Gupta TKD, Prabhakar BS (2013) MADD knock-down enhances doxorubicin and TRAIL induced apoptosis in breast cancer cells. PLoS ONE 8(1–8):e56817

    Article  CAS  Google Scholar 

  17. Jordan VC (2006) Tamoxifen (ICI46,474) as a targeted therapy to treat and prevent breast cancer. Br J Pharmacol 147(Suppl):S269–S276

    CAS  Google Scholar 

  18. Spears M, Bartlett J (2009) The potential role of estrogen receptors and the SRC family as targets for the treatment of breast cancer. Expert Opin Ther Targets 13:665–674

    Article  CAS  Google Scholar 

  19. Brauch J, Jordan VC (2009) Targeting of tamoxifen to enhance antitumour action for the treatment and prevention of breast cancer. Eur J Cancer 45:2274–2283

    Article  CAS  Google Scholar 

  20. Jordan VC (2007) New insights into the metabolism of tamoxifen and its role in the treatment and prevention of breast cancer. Steroids 72:829–842

    Article  CAS  Google Scholar 

  21. Acton EM, Tong GL (1981) Synthesis and preliminary antitumor evaluation of 5-Iminodoxorubicin. J Med Chem 24:669–673

    Article  CAS  Google Scholar 

  22. Bérubé G, Richardson VJ, Ford CHJ (1991) Synthesis of new N-(trifluoroacetyl) doxorubicin analogues. Synthetic Comm 21:931–944

    Article  Google Scholar 

  23. Fauq AH, Maharvi GM, Sinha D (2010) A convenient synthesis of (Z)-4-hydroxy-N-desmethyltamoxifen (endoxifen). Bioorg Med Chem Lett 15:3036–3038

    Article  Google Scholar 

  24. Brugnerotto J, Lizardi J, Goycoolea FM, Arguelles-Monal W, Desbrieres J, Rinaudo M (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer 42:3569–3580

    Article  CAS  Google Scholar 

  25. Palpandi C, Shanmugam V, Shanmugam A (2009) Extraction of chitin and chitosan from shell and operculum of mangrove gastropod nerita (Dostia) crepidularia lamarcck. Intl J Med Med Sci 1:198–205

    CAS  Google Scholar 

  26. Beng XDB, Zhilian Y, Eccleston ME, Swartling J, Slater NKH, Kaminski CF (2008) Fluorescence intensity and lifetime imaging of free and micellar-encapsulated doxorubicin in living cells. Nanomedicine 4:49–56

    Google Scholar 

  27. Engelke M, Bojarski P, Blob R, Diehl H (2001) Tamoxifen perturbs lipid bilayer order and permeability: comparison of DSC, fluorescence anisotropy, laurdan generalized polarization and carboxyfluorescein leakage studies. Biophys Chem 90:157–173

    Article  CAS  Google Scholar 

  28. Dufour C, Dangles O (2005) Flavonoid-serum albumin complexation: determination of binding constants and binding sites by fluorescence spectroscopy. Biochim Biophys Acta 1721:164–173

    Article  CAS  Google Scholar 

  29. Froehlich E, Jennings CJ, Sedaghat-Herati MR, Tajmir-Riahi HA (2009) Dendrimers bind human serum albumin. J Phys Chem B 113:6986–6993

    Article  CAS  Google Scholar 

  30. He W, Li Y, Xue C, Hu Z, Chen X, Sheng F (2005) Effect of Chinese medicine alpinetin on the structure of human serum albumin. Bioorg Med Chem 13:1837–1845

    Article  CAS  Google Scholar 

  31. Sarzehi S, Chamani J (2010) Investigation on the interaction between tamoxifen and human holo-transferrin: determination of the binding mechanism by fluorescence quenching, resonance light scattering and circular dichroism methods. Int J Biol Macromol 47:558–569

    Article  CAS  Google Scholar 

  32. Bi S, Ding L, Tian Y, Song D, Zhou X, Liu X, Zhang H (2004) Investigation of the interaction between flavonoids and human serum albumin. J Mol Struct 703:37–45

    Article  CAS  Google Scholar 

  33. Iranfar H, Rajabi O, Salari R, Chamani J (2012) Probing the interaction of human serum albumin with ciprofloxacin in the presence of silver nanoparticles of three sizes: multispectroscopic and ζ potential investigation. J Phys Chem B 116:1951–1964

    Article  CAS  Google Scholar 

  34. Lakowicz JR (2006) In principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  35. Taye N, Rungassamy T, Albani JR (2009) Fluorescence spectral resolution of tryptophan residues in bovine and human serum albumins. J Pharm Biomed Anal 50:107–116

    Article  Google Scholar 

  36. Skovstrip S, Hansen SG, Skrydstrup T, Schiott B (2010) Conformational flexibility of chitosan: a molecular modeling study. Biomacromolecules 11:3196–3207

    Article  Google Scholar 

  37. Manikrao AM, Mahajan NS, Jawarkar DR, Khatale PN, Kedar KC, Thombare KS (2012) Docking analysis of darunnavir as HIV protease inhibitors. J Comput Meth Mol Des 2:29–43

    Google Scholar 

  38. Agudelo D, Beauregard M, Bérubé G, Heidar-Ali Tajmir-Riahi HA (2012) Antibiotic doxorubicin and its derivative bind milk beta-lactoglobulin. J Photochem Photobiol B 117:185–192

    Article  CAS  Google Scholar 

  39. Agudelo D, Bourassa P, Bruneau J, Berubé G, Asselin E, Tajmir-Riahi HA (2012) Probing the binding sites of antibiotic drug doxorubicin and N-(trifluoroacetyl) doxorubicin with human and bovine serum albumins. PLoS ONE 7(8):1–13, e43814

    Article  Google Scholar 

  40. Ahmed Belatik A, Hotchandani S, Carpentier R, Tajmir-Riahi HA (2012) Locating the binding sites of Pb(II) ion with human and bovine serum albumins. PLoS ONE 7(5):1–11, e36723

    Google Scholar 

  41. Mandeville JS, Tajmir- Riahi HA (2010) Complexes of dendrimers with bovine serum albumin. Biomacromolecules 11:465–472

    Article  CAS  Google Scholar 

  42. Charbonneau DM, Tajmir-Riahi HA (2010) Study on the Interaction of cationic lipids with bovine serum albumin. J Phys Chem B 114:1148–1155

    Article  CAS  Google Scholar 

  43. Bourassa P, Kanakis DC, Tarantilis P, Polissiou MG, Tajmir-Riahi HA (2010) Resveratrol, genistein and curcumin bind bovine serum albumin. J Phys Chem B 114:3348–3354

    Article  CAS  Google Scholar 

  44. Froehlich E, Mandeville JF, Arnold D, Kreplak L, Tajmir-Riahi HA (2012) Effect of PEG and mPEG-anthracene on tRNA aggregation and article formation. Biomacromolecules 13:282–287

    Article  CAS  Google Scholar 

  45. Froehlich E, Mandeville JF, Arnold D, Kreplak L, Tajmir-Riahi HA (2011) PEG and mPEG-anthracene induce DNA condensation and particle formation. J Phys Chem B 115:9873–9879

    Article  CAS  Google Scholar 

  46. Mandeville JS, N’soukpoé-Kossi CN, Neault JF, Tajmir-Riahi HA (2010) Structural analysis of DNA interaction with retinol and retinoic acid. Biochem Cell Biol 88:469–477

    Article  CAS  Google Scholar 

  47. Mandeville JS, Froehlich E, Tajmir-Riahi HA (2009) Study of curcumin and genistein interactions with human serum albumin. J Pharm Biomed Anal 49:468–474

    Article  CAS  Google Scholar 

  48. Zhang G, Que Q, Pan J, Guo J (2008) Study of the interaction between icariin and human serum albumin by fluorescence spectroscopy. J Mol Struct 881:132–138

    Article  CAS  Google Scholar 

  49. Jiang M, Xie MX, Zheng D, Liu Y, Li XY, Chen X (2004) Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin. J Mol Struct 692:71–80

    Article  Google Scholar 

  50. Huang DC, Piché M, Ma G, Jean-Jacques M, Khayat M (2010) Early detection and treatment monitoring of human breast cancer MCF-7 using fluorescence imaging. ART Advanced Research Technologies Inc. www.art.ca/docs/publications/WMIC2010_MCF7.pdf

  51. Gong C, Qi T, Wei X et al (2013) Thermosensitive polymeric hydrogels as drug delivery systems. Curr Med Chem 20:79–94

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) is highly appreciated.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Tajmir-Riahi, H.A., Nafisi, S., Sanyakamdhorn, S., Agudelo, D., Chanphai, P. (2014). Applications of Chitosan Nanoparticles in Drug Delivery. In: Jain, K. (eds) Drug Delivery System. Methods in Molecular Biology, vol 1141. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0363-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0363-4_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0362-7

  • Online ISBN: 978-1-4939-0363-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics