Advertisement

Methods for the Study of Caspase Activation in the Xenopus laevis Oocyte and Egg Extract

  • Francis McCoy
  • Rashid Darbandi
  • Leta K. Nutt
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1133)

Abstract

The study of apoptosis and caspases has advanced greatly over recent decades. Studies conducted in the Xenopus laevis egg extract and oocyte model system have significantly contributed to these advances. Twenty years ago, Newmeyer and colleagues first showed that the X. laevis egg extract, when incubated at room temperature, reconstituted the key molecular events of cellular apoptosis including cytochrome c release, nuclear condensation, internucleosomal fragmentation, and caspase activation. The biochemical tractability of the egg extract system allows for robust study of apoptotic events and caspase activation. Its nature as a cell-free extract system allows substrates to be very simply added by pipette, and their effects on apoptosis and caspase activation and their placement in the apoptotic signaling pathway (e.g., pre- or post-mitochondrial) are subsequently very simply studied using the techniques described in this chapter. Also described in this chapter are assays that allow the study of caspase activation in intact oocytes, another valuable tool available when using the X. laevis model organism. Overall, the X. laevis egg extract/oocyte model is a robust, efficient, and biochemically tractable system that is ideal for the study of apoptosis and caspase activation.

Key words

Xenopus laevis Egg extract Oocytes Caspases Apoptosis 

References

  1. 1.
    Newmeyer DD, Farschon DM, Reed JC (1994) Cell-free apoptosis in Xenopus egg extracts: inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria. Cell 79(2):353–364PubMedCrossRefGoogle Scholar
  2. 2.
    Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275(5303):1132–1136PubMedCrossRefGoogle Scholar
  3. 3.
    Kluck RM, Martin SJ, Hoffman BM, Zhou JS, Green DR, Newmeyer DD (1997) Cytochrome c activation of CPP32-like proteolysis plays a critical role in a Xenopus cell-free apoptosis system. EMBO J 16(15):4639–4649PubMedCrossRefGoogle Scholar
  4. 4.
    Evans EK, Kuwana T, Strum SL, Smith JJ, Newmeyer DD, Kornbluth S (1997) Reaper-induced apoptosis in a vertebrate system. EMBO J 16(24):7372–7381PubMedCrossRefGoogle Scholar
  5. 5.
    Evans EK, Lu W, Strum SL, Mayer BJ, Kornbluth S (1997) Crk is required for apoptosis in Xenopus egg extracts. EMBO J 16(2):230–241PubMedCrossRefGoogle Scholar
  6. 6.
    Kuwana T, Smith JJ, Muzio M, Dixit V, Newmeyer DD, Kornbluth S (1998) Apoptosis induction by caspase-8 is amplified through the mitochondrial release of cytochrome c. J Biol Chem 273(26):16589–16594PubMedCrossRefGoogle Scholar
  7. 7.
    Thress K, Evans EK, Kornbluth S (1999) Reaper-induced dissociation of a Scythe-sequestered cytochrome c-releasing activity. EMBO J 18(20):5486–5493PubMedCrossRefGoogle Scholar
  8. 8.
    Kluck RM, Esposti MD, Perkins G, Renken C, Kuwana T, Bossy-Wetzel E et al (1999) The pro-apoptotic proteins, Bid and Bax, cause a limited permeabilization of the mitochondrial outer membrane that is enhanced by cytosol. J Cell Biol 147(4):809–822PubMedCrossRefGoogle Scholar
  9. 9.
    Kluck RM, Ellerby LM, Ellerby HM, Naiem S, Yaffe MP, Margoliash E, Bredesen D, Mauk AG, Sherman F, Newmeyer DD (2000) Determinants of cytochrome c pro-apoptotic activity. The role of lysine 72 trimethylation. J Biol Chem 275(21):16127–16133PubMedCrossRefGoogle Scholar
  10. 10.
    Tashker JS, Olson M, Kornbluth S (2002) Post-cytochrome C protection from apoptosis conferred by a MAPK pathway in Xenopus egg extracts. Mol Biol Cell 13(2):393–401PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Deming PB, Schafer ZT, Tashker JS, Potts MB, Deshmukh M, Kornbluth S (2004) Bcr-Abl-mediated protection from apoptosis downstream of mitochondrial cytochrome c release. Mol Cell Biol 24(23):10289–10299PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Bergeron L, Perez GI, Macdonald G, Shi L, Sun Y, Jurisicova A et al (1998) Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev 12(9):1304–1314PubMedCrossRefGoogle Scholar
  13. 13.
    Nutt LK, Margolis SS, Jensen M, Herman CE, Dunphy WG, Rathmell JC et al (2005) Metabolic regulation of oocyte cell death through the CaMKII-mediated phosphorylation of caspase-2. Cell 123(1):89–103PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Nutt LK, Buchakjian MR, Gan E, Darbandi R, Yoon S-Y, Wu JQ et al (2009) Metabolic control of oocyte apoptosis mediated by 14-3-3ζ-regulated dephosphorylation of caspase-2. Dev Cell 16(6):856–866PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Andersen JL, Johnson CE, Freel CD, Parrish AB, Day JL, Buchakjian MR et al (2009) Restraint of apoptosis during mitosis through interdomain phosphorylation of caspase-2. EMBO J 28(20):3216–3227PubMedCrossRefGoogle Scholar
  16. 16.
    Andersen JL, Thompson JW, Lindblom KR, Johnson ES, Yang C-S, Lilley LR et al (2011) A biotin switch-based proteomics approach identifies 14-3-3ζ as a target of Sirt1 in the metabolic regulation of caspase-2. Mol Cell 43(5):834–842PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    McCoy F, Darbandi R, Chen SI, Eckard L, Dodd K, Jones K et al (2013) Metabolic regulation of CaMKII protein and caspases in Xenopus laevis egg extracts. J Biol Chem 288(13):8838–8848PubMedCrossRefGoogle Scholar
  18. 18.
    Deming P, Kornbluth S (2006) Study of apoptosis in vitro using the Xenopus egg extract reconstitution system. Methods Mol Biol 332:379–393CrossRefGoogle Scholar
  19. 19.
    McStay GP, Salvesen GS, Green DR (2007) Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways. Cell Death Differ 15(2): 322–331PubMedCrossRefGoogle Scholar
  20. 20.
    Johnson CE, Freel CD, Kornbluth S (2009) Features of programmed cell death in intact Xenopus oocytes and early embryos revealed by near-infrared fluorescence and real-time monitoring. Cell Death Differ 17(1):170–179CrossRefGoogle Scholar
  21. 21.
    Sive HL, Grainger RM, Harland RM (2000) Early development of Xenopus laevis: a laboratory manual. Cold Spring Harbor Laboratory Press. ISBN 978-087969942-0Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Francis McCoy
    • 1
  • Rashid Darbandi
    • 1
  • Leta K. Nutt
    • 1
  1. 1.Department of BiochemistrySt. Jude Children’s Research HospitalMemphisUSA

Personalised recommendations