Preparation of Arabidopsis thaliana Seedling Proteomes for Identifying Metacaspase Substrates by N-terminal COFRADIC

  • Liana Tsiatsiani
  • Simon Stael
  • Petra Van Damme
  • Frank Van Breusegem
  • Kris Gevaert
Part of the Methods in Molecular Biology book series (MIMB, volume 1133)


Proteome-wide discovery of in vivo metacaspase substrates can be obtained by positional proteomics approaches such as N-terminal COFRADIC, for example by comparing the N-terminal proteomes (or N-terminomes) of wild-type plants to transgenic plants not expressing a given metacaspase. In this chapter we describe a protocol for the preparation of plant tissue proteomes, including differential isotopic labelling allowing for a comparison of in vivo N-terminomes that serves as the starting point for N-terminal COFRADIC studies.

Key words

Metacaspases Positional proteomics N-terminal COFRADIC Protease substrates Neo-N-termini Tissue samples Degradomics 



L.T. acknowledges support from the VIB International PhD Program and the Netherlands Proteomics Centre, a program embedded in The Netherlands Genomics Initiative. P.V.D. is a Postdoctoral Fellow of the Research Foundation Flanders (FWO-Vlaanderen) and S.S. is indebted to the Special Research Fund of Ghent University for a postdoctoral fellowship. F.V.B acknowledges support from grants of the Ghent University Multidisciplinary Research Partnership “Ghent BioEconomy” 27 (project no. 01MRB510W) and of the Belgian Science Policy Office (project IAP7/29). F.V.B. and K.G. acknowledge support from the Research Foundation Flanders (FWO-Vlaanderen), research project G.0038.09.


  1. 1.
    Plasman K et al (2013) Contemporary positional proteomics strategies to study protein processing. Curr Opin Chem Biol 17:66–72PubMedCrossRefGoogle Scholar
  2. 2.
    Dix MM et al (2008) Global mapping of the topography and magnitude of proteolytic events in apoptosis. Cell 134:679–691PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Mahrus S et al (2008) Global sequencing of proteolytic cleavage sites in apoptosis by specific labeling of protein N termini. Cell 134:866–876PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Kleifeld O et al (2010) Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products. Nat Biotechnol 28:281–288PubMedCrossRefGoogle Scholar
  5. 5.
    Gevaert K et al (2003) Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. Nat Biotechnol 21:566–569PubMedCrossRefGoogle Scholar
  6. 6.
    Schilling O et al (2010) Proteome-wide analysis of protein carboxy termini: C terminomics. Nat Methods 7:508–511PubMedCrossRefGoogle Scholar
  7. 7.
    Van Damme P et al (2010) Complementary positional proteomics for screening substrates of endo- and exoproteases. Nat Methods 7:512–515PubMedCrossRefGoogle Scholar
  8. 8.
    de Poot SA et al (2011) Human and mouse granzyme M display divergent and species-specific substrate specificities. Biochem J 437: 431–442PubMedCrossRefGoogle Scholar
  9. 9.
    Staes A et al (2008) Improved recovery of proteome-informative, protein N-terminal peptides by combined fractional diagonal chromatography (COFRADIC). Proteomics 8:1362–1370PubMedCrossRefGoogle Scholar
  10. 10.
    Ong SE et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386PubMedCrossRefGoogle Scholar
  11. 11.
    Plasman K et al (2011) Probing the efficiency of proteolytic events by positional proteomics. Mol Cell Proteomics 10(M110):003301PubMedGoogle Scholar
  12. 12.
    Skirycz A et al (2011) A reciprocal 15 N-labeling proteomic analysis of expanding Arabidopsis leaves subjected to osmotic stress indicates importance of mitochondria in preserving plastid functions. J Proteome Res 10:1018–1029PubMedCrossRefGoogle Scholar
  13. 13.
    MacCoss MJ et al (2003) A correlation algorithm for the automated quantitative analysis of shotgun proteomics data. Anal Chem 75:6912–6921PubMedCrossRefGoogle Scholar
  14. 14.
    Tsiatsiani L et al (2013) The Arabidopsis metacaspase9 degradome. The Plant Cell 25(8): 2831–2847PubMedCrossRefGoogle Scholar
  15. 15.
    Staes A et al (2011) Selecting protein N-terminal peptides by combined fractional diagonal chromatography. Nat Protoc 6:1130–1141PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Liana Tsiatsiani
    • 1
    • 2
  • Simon Stael
    • 3
    • 4
  • Petra Van Damme
    • 5
    • 6
  • Frank Van Breusegem
    • 3
    • 4
  • Kris Gevaert
    • 5
    • 6
  1. 1.Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
  2. 2.Netherlands Proteomics CenterUtrechtthe Netherlands
  3. 3.Department of Plant Systems BiologyVIBGhentBelgium
  4. 4.Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
  5. 5.Department of Medical Protein ResearchVIBGhentBelgium
  6. 6.Department of BiochemistryGhent UniversityGhentBelgium

Personalised recommendations