Advertisement

Monitoring the Proteostasis Function of the Saccharomyces cerevisiae Metacaspase Yca1

  • Amit Shrestha
  • Robin E. C. Lee
  • Lynn A. Megeney
Protocol
  • 1.5k Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 1133)

Abstract

The functional versatility of metacaspase proteases has been established by reports of their involvement in non-apoptotic cellular processes, in addition to their canonical role in apoptosis/programmed cell death. While the budding yeast metacaspase Yca1 has been well characterized for its role in cell death regulation, more recent examinations suggest that the protease may be involved in key processes that increase survival and fitness. More specifically, examinations suggest that Yca1 is central to maintaining cellular proteostasis as it interacts with major components involved in protein biosynthesis and functions to limit aggregate deposition. Here, we describe the methods utilized to analyze the role Yca1 in proteostasis.

Key words

Aggregates Filtration Heat stress Immunoprecipitation Metacaspase Proteostasis Protocols Vacuole morphology 

References

  1. 1.
    Aravind L, Koonin EV (2002) Classification of the caspase–hemoglobinase fold: detection of new families and implications for the origin of the eukaryotic separins. Proteins 46:355–367PubMedCrossRefGoogle Scholar
  2. 2.
    Wong AH, Yan C, Shi Y (2012) Crystal structure of the yeast metacaspase Yca1. J Biol Chem 287:29251–29259PubMedCrossRefGoogle Scholar
  3. 3.
    Uren AG, O’Rourke K, Aravind L et al (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins one of which plays a key role in MALT lymphoma. Mol Cell 6:961–967PubMedGoogle Scholar
  4. 4.
    Tsiatsiani L, Van Breusegem F, Gallois P et al (2011) Metacaspases. Cell Death Differ 18:1279–1288PubMedCrossRefGoogle Scholar
  5. 5.
    Madeo F, Herker E, Maldener C et al (2002) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9:911–917PubMedCrossRefGoogle Scholar
  6. 6.
    Carmona-Gutierrez D, Fröhlich KU, Kroemer G et al (2010) Metacaspases are caspases. Doubt no more. Cell Death Differ 17:377PubMedCrossRefGoogle Scholar
  7. 7.
    Lee REC, Puente LG, Kaern M et al (2008) A non-death role of the yeast metacaspase: Yca1p alters cell cycle dynamics. PLoS ONE 3:e2956PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Madeo F, Carmona-Gutierrez D, Ring J et al (2009) Caspase-dependent and caspase-independent cell death pathways in yeast. Biochem Biophys Res Commun 382:227–231PubMedCrossRefGoogle Scholar
  9. 9.
    Guscetti F, Nath N, Denko N (2005) Functional characterization of human proapoptotic molecules in yeast S. cerevisiae. FASEB J 19:464–466PubMedGoogle Scholar
  10. 10.
    Fernando P, Megeney LA (2007) Is caspase-dependent apoptosis only cell differentiation taken to the extreme? FASEB J 21:8–17PubMedCrossRefGoogle Scholar
  11. 11.
    Shrestha A, Megeney LA (2012) The non-death role of metacaspase proteases. Front Oncol 2:78PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Mitchell L, Lambert JP, Gerdes M et al (2008) Functional dissection of the NuA4 histone acetyltransferase reveals its role as a genetic hub and that Eaf1 is essential for complex integrity. Mol Cell Biol 28:2244–2256PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Lee REC, Brunette S, Puente LG et al (2010) Metacaspase Yca1 is required for clearance of insoluble protein aggregates. Proc Natl Acad Sci U S A 107:13348–13353PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Shrestha A, Brunette S, Puente LG et al (2013) The role of Yca1 in proteostasis. Yca1 regulates the composition of the insoluble proteome. J Proteomics 81:24–30PubMedCrossRefGoogle Scholar
  15. 15.
    Parsell DA, Kowal AS, Singer MA et al (1994) Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372:475–478PubMedCrossRefGoogle Scholar
  16. 16.
    Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73–82PubMedCrossRefGoogle Scholar
  17. 17.
    Cashikar AG, Duendald M, Lindquist SL (2005) A chaperone pathway in protein disaggregation. Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. J Biol Chem 280:23869–23875PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Haslbeck M, Miess A, Stromer T et al (2005) Disassembling protein aggregates in the yeast cytosol. The cooperation of Hsp26 with Ssa1 and Hsp104. J Biol Chem 280:23861–23868PubMedCrossRefGoogle Scholar
  19. 19.
    Rand JD, Grant CM (2006) The thioredoxin system protects ribosomes against stress induced aggregation. Mol Biol Cell 17:387–401PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Journo D, Winter G, Abeliovich H (2008) Monitoring autophagy in yeast using FM4-64 fluorescence. Methods Enzymol 451:79–88PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Amit Shrestha
    • 1
    • 2
  • Robin E. C. Lee
    • 3
    • 4
    • 5
  • Lynn A. Megeney
    • 1
    • 2
  1. 1.Regenerative Medicine Program, Sprott Centre for Stem Cell ResearchOttawa Hospital Research Institute, The Ottawa HospitalOttawaCanada
  2. 2.Department of Cellular and Molecular MedicineUniversity of OttawaOttawaCanada
  3. 3.Department of Cancer BiologyDana Farber Cancer InstituteBostonUSA
  4. 4.Center for Cancer Systems BiologyDana Farber Cancer InstituteBostonUSA
  5. 5.Department of GeneticsHarvard Medical SchoolBostonUSA

Personalised recommendations