General In Vitro Caspase Assay Procedures

  • Dave Boucher
  • Catherine Duclos
  • Jean-Bernard Denault
Part of the Methods in Molecular Biology book series (MIMB, volume 1133)


One of the most valuable tools that have been developed for the study of apoptosis is the availability of recombinant active caspases. The determination of caspase substrate preference, the design of sensitive substrates and potent inhibitors, the resolution of caspase structures, the elucidation of their activation mechanisms, and the identification of their substrates were made possible by the availability of sufficient amounts of enzymatically pure caspases. The current chapter describes at length the expression, purification, and basic enzymatic characterization of apoptotic caspases.

Key words

Caspase Purification Active-site titration Enzymatic assays 


  1. 1.
    Cerretti DP et al (1992) Molecular cloning of the interleukin-1β converting enzyme. Science 256:97–100PubMedCrossRefGoogle Scholar
  2. 2.
    Thornberry NA et al (1992) A novel heterodimeric cysteine protease is required for interleukin-1beta processing in monocytes. Nature 356:768–774PubMedCrossRefGoogle Scholar
  3. 3.
    Yi CH, Yuan J (2009) The Jekyll and Hyde functions of caspases. Dev Cell 16:21–34PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Thornberry NA et al (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 272:17907–17911PubMedCrossRefGoogle Scholar
  5. 5.
    Stennicke HR, Renatus M, Meldal M, Salvesen GS (2000) Internally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1, 3, 6, 7 and 8. Biochem J 350:563–568PubMedCrossRefGoogle Scholar
  6. 6.
    Lavrik IN, Golks A, Krammer PH (2005) Caspases: pharmacological manipulation of cell death. J Clin Invest 115:2665–2672PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Garcia-Calvo M et al (1998) Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem 273:32608–32613PubMedCrossRefGoogle Scholar
  8. 8.
    Fuentes-Prior P, Salvesen GS (2004) The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 384:201–232PubMedCrossRefGoogle Scholar
  9. 9.
    Agard NJ, Wells JA (2009) Methods for the proteomic identification of protease substrates. Curr Opin Chem Biol 13:503–509PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Demon D et al (2009) Caspase substrates: easily caught in deep waters? Trends Biotechnol 27:680–688PubMedCrossRefGoogle Scholar
  11. 11.
    Luthi AU, Martin SJ (2007) The CASBAH: a searchable database of caspase substrates. Cell Death Differ 14:641–650PubMedCrossRefGoogle Scholar
  12. 12.
    Igarashi Y et al (2007) CutDB: a proteolytic event database. Nucleic Acids Res 35:D546–D549PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Timmer JC et al (2009) Structural and kinetic determinants of protease substrates. Nat Struct Mol Biol 16:1101–1108PubMedCrossRefGoogle Scholar
  14. 14.
    Muppidi JR et al (2006) Homotypic FADD interactions through a conserved RXDLL motif are required for death receptor-induced apoptosis. Cell Death Differ 13:1641–1650PubMedCrossRefGoogle Scholar
  15. 15.
    Bouchier-Hayes L et al (2009) Characterization of cytoplasmic caspase-2 activation by induced proximity. Mol cell 35:830–840PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Vegran F, Boidot R, Solary E, Lizard-Nacol S (2011) A short caspase-3 isoform inhibits chemotherapy-induced apoptosis by blocking apoptosome assembly. PLoS One 6:e29058PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Kamada S, Kikkawa U, Tsujimoto Y, Hunter T (2005) Nuclear translocation of caspase-3 is dependent on its proteolytic activation and recognition of a substrate-like protein(s). J Biol Chem 280:857–860PubMedCrossRefGoogle Scholar
  18. 18.
    Beaudouin J, Liesche C, Aschenbrenner S, Horner M, Eils R (2013) Caspase-8 cleaves its substrates from the plasma membrane upon CD95-induced apoptosis. Cell Death Differ 20:599–610PubMedCrossRefGoogle Scholar
  19. 19.
    Arakawa T et al (2007) Suppression of protein interactions by arginine: a proposed mechanism of the arginine effects. Biophys Chem 127:1–8PubMedCrossRefGoogle Scholar
  20. 20.
    Baynes BM, Wang DI, Trout BL (2005) Role of arginine in the stabilization of proteins against aggregation. Biochemistry 44:4919–4925PubMedCrossRefGoogle Scholar
  21. 21.
    Arakawa T, Tsumoto K (2003) The effects of arginine on refolding of aggregated proteins: not facilitate refolding, but suppress aggregation. Biochem Biophys Res Commun 304:148–152PubMedCrossRefGoogle Scholar
  22. 22.
    Reddy KR, Lilie H, Rudolph R, Lange C (2005) L-Arginine increases the solubility of unfolded species of hen egg white lysozyme. Protein Sci 14:929–935CrossRefGoogle Scholar
  23. 23.
    McStay GP, Salvesen GS, Green DR (2008) Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways. Cell Death Differ 15:322–331PubMedCrossRefGoogle Scholar
  24. 24.
    Schecter I, Berger M (1967) On the size of the active site in proteases. Biochem Biophys Res Commun 27:157–162CrossRefGoogle Scholar
  25. 25.
    Talanian RV et al (1997) Substrate specificities of caspase family proteases. J Biol Chem 272:9677–9682PubMedCrossRefGoogle Scholar
  26. 26.
    Mace PD, Riedl SJ (2010) Molecular cell death platforms and assemblies. Curr Opin Cell Biol 22:828–836PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Renatus M, Stennicke HR, Scott FL, Liddington RC, Salvesen GS (2001) Dimer formation drives the activation of the cell death protease caspase 9. Proc Natl Acad Sci U S A 98:14250–14255PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Baliga BC, Read SH, Kumar S (2004) The biochemical mechanism of caspase-2 activation. Cell Death Differ 11:1234–1241PubMedCrossRefGoogle Scholar
  29. 29.
    Wachmann K et al (2010) Activation and specificity of human caspase-10. Biochemistry 49:8307–8315PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Boatright KM et al (2003) A unified model for apical caspase activation. Mol Cell 11:529–541PubMedCrossRefGoogle Scholar
  31. 31.
    Pop C, Timmer J, Sperandio S, Salvesen GS (2006) The apoptosome activates caspase-9 by dimerization. Mol Cell 22:269–275PubMedCrossRefGoogle Scholar
  32. 32.
    Boucher D, Blais V, Denault JB (2012) Caspase-7 uses an exosite to promote poly(ADP ribose) polymerase 1 proteolysis. Proc Natl Acad Sci U S A 109:5669–5674PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Janicke RU, Sprengart ML, Wati MR, Porter AG (1998) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273:9357–9360PubMedCrossRefGoogle Scholar
  34. 34.
    Soule HD, Vazguez J, Long A, Albert S, Brennan M (1973) A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst 51:1409–1416PubMedGoogle Scholar
  35. 35.
    Denault JB et al (2006) Engineered hybrid dimers: tracking the activation pathway of caspase-7. Mol Cell 23:523–533PubMedCrossRefGoogle Scholar
  36. 36.
    Pop C et al (2011) FLIPL induces caspase 8 activity in the absence of interdomain caspase 8 cleavage and alters substrate specificity. Biochem J 433:447–457PubMedCrossRefGoogle Scholar
  37. 37.
    Stennicke HR et al (1999) Caspase-9 can be activated without proteolytic processing. J Biol Chem 274:8359–8362PubMedCrossRefGoogle Scholar
  38. 38.
    Boucher D, Blais V, Drag M, Denault JB (2011) Molecular determinants involved in activation of caspase 7. Biosci Rep 31:283–294PubMedCrossRefGoogle Scholar
  39. 39.
    Araya R, Takahashi R, Nomura Y (2002) Yeast two-hybrid screening using constitutive-active caspase-7 as bait in the identification of PA28gamma as an effector caspase substrate. Cell Death Differ 9:322–328PubMedCrossRefGoogle Scholar
  40. 40.
    Stennicke HR, Salvesen GS (1999) Catalytic properties of the caspases. Cell Death Differ 6:1054–1059PubMedCrossRefGoogle Scholar
  41. 41.
    Pop C, Fitzgerald P, Green DR, Salvesen GS (2007) Role of proteolysis in caspase-8 activation and stabilization. Biochemistry 46:4398–4407PubMedCrossRefGoogle Scholar
  42. 42.
    Zhou Q, Salvesen GS (1997) Activation of pro-caspase-7 by serine proteases includes a non-canonical specificity. Biochem J 324:361–364PubMedGoogle Scholar
  43. 43.
    Stennicke HR et al (1998) Pro-caspase-3 is a major physiologic target of caspase-8. J Biol Chem 273:27084–27090PubMedCrossRefGoogle Scholar
  44. 44.
    Chao Y et al (2005) Engineering a dimeric caspase-9: a re-evaluation of the induced proximity model for caspase activation. PLoS Biol 3:e183PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Walters J et al (2009) A constitutively active and uninhibitable caspase-3 zymogen efficiently induces apoptosis. Biochem J 424:335–345PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Swan ID (1972) The inhibition of hen egg-white lysozyme by imidazole and indole derivatives. J Mol Biol 65:59–62PubMedCrossRefGoogle Scholar
  47. 47.
    Bury A (1981) Analysis of protein and peptide mixtures: evaluation of three sodium dodecyl sulphate-polyacrylamide gel electrophoresis buffer systems. J Chromatogr 213:491–500CrossRefGoogle Scholar
  48. 48.
    Edelhoch H (1967) Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6:1948–1954PubMedCrossRefGoogle Scholar
  49. 49.
    Zhou Q, Salvesen GS (2000) Viral caspase inhibitors CrmA and p35. Methods Enzymol 322:143–154PubMedCrossRefGoogle Scholar
  50. 50.
    Zhou Q et al (1998) Interaction of the baculovirus anti-apoptotic protein p35 with caspases: specificity, kinetics, and characterization of the caspase/p35 complex. Biochemistry 37:10757–10765PubMedCrossRefGoogle Scholar
  51. 51.
    Oberst A et al (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471:363–367PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Oberst A et al (2010) Inducible dimerization and inducible cleavage reveal a requirement for both processes in caspase-8 activation. J Biol Chem 285:16632–16642PubMedCrossRefGoogle Scholar
  53. 53.
    van Raam BJ, Ehrnhoefer DE, Hayden MR, Salvesen GS (2013) Intrinsic cleavage of receptor-interacting protein kinase-1 by caspase-6. Cell Death Differ 20:86–96PubMedCrossRefGoogle Scholar
  54. 54.
    Gray DC, Mahrus S, Wells JA (2010) Activation of specific apoptotic caspases with an engineered small-molecule-activated protease. Cell 142:637–646PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Witkowski WA, Hardy JA (2009) L2′ loop is critical for caspase-7 active site formation. Protein Sci 18:1459–1468PubMedCrossRefGoogle Scholar
  56. 56.
    Witkowski WA, Hardy JA (2011) A designed redox-controlled caspase. Proc Natl Acad Sci U S A 20(8):1421–1431Google Scholar
  57. 57.
    Hardy JA, Lam J, Nguyen JT, O’Brien T, Wells JA (2004) Discovery of an allosteric site in the caspases. Proc Natl Acad Sci U S A 101:12461–12466PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Scheer JM, Romanowski MJ, Wells JA (2006) A common allosteric site and mechanism in caspases. Proc Natl Acad Sci U S A 103:7595–7600PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Velazquez-Delgado EM, Hardy JA (2012) Zinc-mediated allosteric inhibition of caspase-6. J Biol Chem 287:36000–36011PubMedCrossRefGoogle Scholar
  60. 60.
    Denault JB, Eckelman BP, Shin H, Pop C, Salvesen GS (2007) Caspase 3 attenuates XIAP (X-linked inhibitor of apoptosis protein)-mediated inhibition of caspase 9. Biochem J 405:11–19PubMedGoogle Scholar
  61. 61.
    Boucher D, Blais V, Denault JB (2012) Caspase-7 uses an exosite to promote poly(ADP ribose) polymerase 1 proteolysis. Proc Natl Acad Sci U S A 109(15):5669–5674PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Dave Boucher
    • 1
  • Catherine Duclos
    • 2
  • Jean-Bernard Denault
    • 2
  1. 1.Institute of Molecular BioscienceUniversity of QueenslandSt. LuciaAustralia
  2. 2.Department of Pharmacology, Faculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeCanada

Personalised recommendations