Skip to main content

Salvage or Recovery of Failed Targets by Mutagenesis to Reduce Surface Entropy

  • Protocol
  • First Online:
Structural Genomics and Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1140))

Abstract

The success of macromolecular crystallization depends on the protein’s ability to form specific, cohesive intermolecular interactions that serve as crystal contacts. In the cases where the protein lacks surface patches conducive to such interactions, crystallization may not occur. However, it is possible to enhance the likelihood of crystallization by engineering such patches through site-directed mutagenesis, targeting specifically residues with high side chain entropy and replacing them with small amino acids (i.e., surface entropy reduction, SER). This method has proven successful in hundreds of crystallographic analyses of proteins otherwise recalcitrant to crystallization. Three representative cases of the application of the SER strategy, assisted by the automated prediction of the mutation sites using the SER prediction (SERp) server are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McElroy HH, Sisson GW, Schottlin WE et al (1992) Studies on engineering crystallizability by mutation of surface residues of human thymidylate synthase. J Cryst Growth 122:265–272

    Article  CAS  Google Scholar 

  2. Dale GE, Broger C, Langen H, D’Arcy A, Stuber D (1994) Improving protein solubility through rationally designed amino acid replacements: solubilization of the trimethoprim-resistant type S1 dihydrofolate reductase. Protein Eng 7:933–939

    Article  CAS  PubMed  Google Scholar 

  3. Longenecker KL, Garrard SM, Sheffield PJ, Derewenda ZS (2001) Protein crystallization by rational mutagenesis of surface residues: Lys to Ala mutations promote crystallization of RhoGDI. Acta Crystallogr D 57:679–688

    Article  CAS  PubMed  Google Scholar 

  4. Derewenda ZS (2004) Rational protein crystallization by mutational surface engineering. Structure 12:529–535

    Article  CAS  PubMed  Google Scholar 

  5. Mateja A, Devedjiev Y, Krowarsch D, Longenecker K, Dauter Z, Otlewski J, Derewenda ZS (2002) The impact of Glu → Ala and Glu → Asp mutations on the crystallization properties of RhoGDI: the structure of RhoGDI at 1.3 A resolution. Acta Crystallogr D 58:1983–1991

    Article  PubMed  Google Scholar 

  6. Derewenda ZS, Vekilov PG (2006) Entropy and surface engineering in protein crystallization. Acta Crystallogr D 62:116–124

    Article  PubMed  Google Scholar 

  7. Cooper DR, Boczek T, Grelewska K, Pinkowska M, Sikorska M, Zawadzki M, Derewenda Z (2007) Protein crystallization by surface entropy reduction: optimization of the SER strategy. Acta Crystallogr D 63:636–645

    Article  CAS  PubMed  Google Scholar 

  8. Pellicane G, Smith G, Sarkisov L (2008) Molecular dynamics characterization of protein crystal contacts in aqueous solutions. Phys Rev Lett 101:248102

    Article  PubMed  Google Scholar 

  9. Cieslik M, Derewenda ZS (2009) The role of entropy and polarity in intermolecular contacts in protein crystals. Acta Crystallogr D 65:500–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Price WN 2nd, Chen Y, Handelman SK, Neely H, Manor P, Karlin R, Nair R, Liu J, Baran M, Everett J, Tong SN, Forouhar F, Swaminathan SS, Acton T, Xiao R, Luft JR, Lauricella A, DeTitta GT, Rost B, Montelione GT, Hunt JF (2009) Understanding the physical properties that control protein crystallization by analysis of large-scale experimental data. Nat Biotechnol 27:51–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Longenecker KL, Lewis ME, Chikumi H, Gutkind JS, Derewenda ZS (2001) Structure of the RGS-like domain from PDZ-RhoGEF: linking heterotrimeric g protein-coupled signaling to Rho GTPases. Structure 9:559–569

    Article  CAS  PubMed  Google Scholar 

  12. Derewenda U, Mateja A, Devedjiev Y, Routzahn KM, Evdokimov AG, Derewenda ZS, Waugh DS (2004) The structure of Yersinia pestis V-antigen, an essential virulence factor and mediator of immunity against plague. Structure 12:301–306

    CAS  PubMed  Google Scholar 

  13. Janda I, Devedjiev Y, Derewenda U, Dauter Z, Bielnicki J, Cooper DR, Graf PC, Joachimiak A, Jakob U, Derewenda ZS (2004) The crystal structure of the reduced, Zn2+-bound form of the B. subtilis Hsp33 chaperone and its implications for the activation mechanism. Structure 12:1901–1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bielnicki J, Devedjiev Y, Derewenda U, Dauter Z, Joachimiak A, Derewenda ZS (2006) B. subtilis ykuD protein at 2.0 A resolution: insights into the structure and function of a novel, ubiquitous family of bacterial enzymes. Proteins 62:144–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goldschmidt L, Cooper DR, Derewenda ZS, Eisenberg D (2007) Toward rational protein crystallization: a web server for the design of crystallizable protein variants. Protein Sci 16:1569–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Derewenda U, Boczek T, Gorres KL, Yu M, Hung LW, Cooper D, Joachimiak A, Raines RT, Derewenda ZS (2009) Structure and function of Bacillus subtilis YphP, a prokaryotic disulfide isomerase with a CXC catalytic motif. Biochemistry 48:8664–8671

    Article  CAS  PubMed  Google Scholar 

  17. Ubhi D, Kavanagh KL, Monzingo AF, Robertus JD (2011) Structure of Candida albicans methionine synthase determined by employing surface residue mutagenesis. Arch Biochem Biophys 513:19–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Newman J (2005) Expanding screening space through the use of alternative reservoirs in vapor-diffusion experiments. Acta Crystallogr D 61:490–493

    Article  PubMed  Google Scholar 

  19. Hsieh FL, Chang TH, Ko TP, Wang AH (2011) Structure and mechanism of an Arabidopsis medium/long-chain-length prenyl pyrophosphate synthase. Plant Physiol 155:1079–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Institutes of Health, grant GM095847.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zygmunt S. Derewenda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Goldschmidt, L., Eisenberg, D., Derewenda, Z.S. (2014). Salvage or Recovery of Failed Targets by Mutagenesis to Reduce Surface Entropy. In: Anderson, W.F. (eds) Structural Genomics and Drug Discovery. Methods in Molecular Biology, vol 1140. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-0354-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0354-2_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-0353-5

  • Online ISBN: 978-1-4939-0354-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics