Skip to main content

High-Throughput Crystallization Screening

  • Protocol
  • First Online:
Structural Genomics and Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1140))

Abstract

Protein structure determination by X-ray crystallography is dependent on obtaining a single protein crystal suitable for diffraction data collection. Due to this requirement, protein crystallization represents a key step in protein structure determination. The conditions for protein crystallization have to be determined empirically for each protein, making this step also a bottleneck in the structure determination process. Typical protein crystallization practice involves parallel setup and monitoring of a considerable number of individual protein crystallization experiments (also called crystallization trials). In these trials the aliquots of purified protein are mixed with a range of solutions composed of a precipitating agent, buffer, and sometimes an additive that have been previously successful in prompting protein crystallization. The individual chemical conditions in which a particular protein shows signs of crystallization are used as a starting point for further crystallization experiments. The goal is optimizing the formation of individual protein crystals of sufficient size and quality to make them suitable for diffraction data collection. Thus the composition of the primary crystallization screen is critical for successful crystallization.

Systematic analysis of crystallization experiments carried out on several hundred proteins as part of large-scale structural genomics efforts allowed the optimization of the protein crystallization protocol and identification of a minimal set of 96 crystallization solutions (the “TRAP” screen) that, in our experience, led to crystallization of the maximum number of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chayen NE (2004) Turning protein crystallization from an art into a science. Curr Opin Struct Biol 14(5):577–583

    Article  CAS  PubMed  Google Scholar 

  2. McPherson A (2004) Introduction to protein crystallization. Methods 34(3):254–265

    Article  CAS  PubMed  Google Scholar 

  3. Chayen NE, Saridakis E (2008) Protein crystallization: from purified protein to diffraction-quality crystal. Nat Methods 5(2):147–153

    Article  CAS  PubMed  Google Scholar 

  4. Bergfors T (2009) Protein crystallization. In: Tsigelny IF (ed) IUL biotechnology, 2nd edn. International University Line, La Jolla

    Google Scholar 

  5. Ochi T et al (2009) Perspectives on protein crystallization. Prog Biophys Mol Biol 101(1–3):56–63

    Article  CAS  PubMed  Google Scholar 

  6. Bolanos-Garcia VM, Chayen NE (2009) New directions in conventional methods of protein crystallization. Prog Biophys Mol Biol 101(1–3):3–12

    Article  CAS  PubMed  Google Scholar 

  7. McPherson A (1990) Current approaches to macromolecular crystallization. Eur J Biochem 189(1):1–23

    Article  CAS  PubMed  Google Scholar 

  8. Saridakis E, Chayen NE (2003) Systematic improvement of protein crystals by determining the supersolubility curves of phase diagrams. Biophys J 84(2 Pt 1):1218–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McPherson A (1985) Crystallization of proteins by variation of pH or temperature. Methods Enzymol 114:125–127

    Article  CAS  PubMed  Google Scholar 

  10. Enrico A, Stura GRN, Wilson IA (1992) Strategies in the crystallization of glycoproteins and protein complexes. J Cryst Growth 122(1–4):273–285

    Google Scholar 

  11. Blow DM et al (1994) Control of nucleation of protein crystals. Protein Sci 3(10):1638–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Benvenuti M, Mangani S (2007) Crystallization of soluble proteins in vapor diffusion for X-ray crystallography. Nat Protoc 2(7):1633–1651

    Article  CAS  PubMed  Google Scholar 

  13. Jancarik J, Kim S-H (1991) Sparse matrix sampling: a screening method for crystallization of proteins. J Appl Cryst 24:409–411

    Article  CAS  Google Scholar 

  14. Bulek AM et al (2012) TCR/pMHC optimized protein crystallization screen. J Immunol Methods 382(1–2):203–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grimm C et al (2010) A crystallization screen based on alternative polymeric precipitants. Acta Crystallogr D Biol Crystallogr 66(Pt 6):685–697

    Article  CAS  PubMed  Google Scholar 

  16. Berry IM et al (2006) SPINE high-throughput crystallization, crystal imaging and recognition techniques: current state, performance analysis, new technologies and future aspects. Acta Crystallogr D Biol Crystallogr 62(Pt 10):1137–1149

    Article  PubMed  Google Scholar 

  17. Chayen NE, Saridakis E (2002) Protein crystallization for genomics: towards high-throughput optimization techniques. Acta Crystallogr D Biol Crystallogr 58(Pt 6 Pt 2):921–927

    Article  PubMed  Google Scholar 

  18. Sauder MJ et al (2008) High throughput protein production and crystallization at NYSGXRC. Methods Mol Biol 426:561–575

    Article  CAS  PubMed  Google Scholar 

  19. Stewart L, Clark R, Behnke C (2002) High-throughput crystallization and structure determination in drug discovery. Drug Discov Today 7(3):187–196

    Article  CAS  PubMed  Google Scholar 

  20. Sugahara M et al (2008) High-throughput crystallization-to-structure pipeline at RIKEN SPring-8 center. J Struct Funct Genomics 9(1–4):21–28

    Article  CAS  PubMed  Google Scholar 

  21. Page R, Stevens RC (2004) Crystallization data mining in structural genomics: using positive and negative results to optimize protein crystallization screens. Methods 34(3):373–389

    Article  CAS  PubMed  Google Scholar 

  22. Hui R, Edwards A (2003) High-throughput protein crystallization. J Struct Biol 142(1):154–161

    Article  CAS  PubMed  Google Scholar 

  23. Kimber MS et al (2003) Data mining crystallization databases: knowledge-based approaches to optimize protein crystal screens. Proteins 51(4):562–568

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported with federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract Nos. HHSN272200700058C and HHSN272201200026C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Savchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Skarina, T., Xu, X., Evdokimova, E., Savchenko, A. (2014). High-Throughput Crystallization Screening. In: Anderson, W.F. (eds) Structural Genomics and Drug Discovery. Methods in Molecular Biology, vol 1140. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-0354-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0354-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-0353-5

  • Online ISBN: 978-1-4939-0354-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics