Skip to main content

Pseudo-infectious Reporter Virus Particles for Measuring Antibody-Mediated Neutralization and Enhancement of Dengue Virus Infection

  • Protocol
  • First Online:
Dengue

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1138))

Abstract

This chapter outlines methods for the production of dengue virus (DENV) reporter virus particles (RVPs) and their use in assays that measure antibody-mediated neutralization and enhancement of DENV infection. RVPs are pseudo-infectious virions produced by complementation of a self-replicating flavivirus replicon with the DENV structural genes in trans. RVPs harvested from transfected cells are capable of only a single round of infection and encapsidate replicon RNA that encodes a reporter gene used to enumerate infected cells. RVPs may be produced using the structural genes of different DENV serotypes, genotypes, and mutants by changing plasmids used for complementation. Further modifications are possible including generating RVPs with varying levels of uncleaved prM protein, which resemble either the immature or mature form of the virus. Neutralization potency is measured by incubating RVPs with serial dilutions of antibody, followed by infection of target cells that express DENV attachment factors. Enhancement of infection is measured similarly using Fc receptor-expressing cells capable of internalizing antibody-virus complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gubler DJ, Kuno G, Markoff L (2007) Flaviviruses. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott-Raven, Philadelphia, pp 1154–1227

    Google Scholar 

  2. Monath TP (1994) Dengue: the risk to developed and developing countries. Proc Natl Acad Sci U S A 91:2395–2400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Halstead SB (2007) Dengue. Lancet 370: 1644–1652

    Article  PubMed  Google Scholar 

  4. Rico-Hesse R (1990) Molecular evolution and distribution of dengue viruses type 1 and 2 in nature. Virology 174:479–493

    Article  CAS  PubMed  Google Scholar 

  5. Holmes EC, Twiddy SS (2003) The origin, emergence and evolutionary genetics of dengue virus. Infect Genet Evol 3:19–28

    Article  PubMed  Google Scholar 

  6. Mukhopadhyay S, Kuhn RJ, Rossmann MG (2005) A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3:13–22

    Article  CAS  PubMed  Google Scholar 

  7. Lindenbach BD, Rice CM (2003) Molecular biology of flaviviruses. Adv Virus Res 59:23–61

    Article  CAS  PubMed  Google Scholar 

  8. Khromykh AA, Westaway EG (1997) Subgenomic replicons of the flavivirus Kunjin: construction and applications. J Virol 71: 1497–1505

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Khromykh AA (2000) Replicon-based vectors of positive strand RNA viruses. Curr Opin Mol Therapeut 2:555–569

    CAS  Google Scholar 

  10. Hoenninger VM, Rouha H, Orlinger KK et al (2008) Analysis of the effects of alterations in the tick-borne encephalitis virus 3′-noncoding region on translation and RNA replication using reporter replicons. Virology 377:419–430

    Article  CAS  PubMed  Google Scholar 

  11. Chen Y-L, Yin Z, Duraiswamy J et al (2010) Inhibition of dengue virus RNA synthesis by an adenosine nucleoside. Antimicrob Agents Chemother 54(7):2932–2939

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Suzuki R, Fayzulin R, Frolov I et al (2008) Identification of mutated cyclization sequences that permit efficient replication of West Nile virus genomes: use in safer propagation of a novel vaccine candidate. J Virol 82(14): 6942–6951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Liu WJ, Sedlak PL, Kondratieva N et al (2002) Complementation analysis of the flavivirus Kunjin NS3 and NS5 proteins defines the minimal regions essential for formation of a replication complex and shows a requirement of NS3 in cis for virus assembly. J Virol 76: 10766–10775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Khromykh AA, Meka H, Guyatt KJ et al (2001) Essential role of cyclization sequences in flavivirus RNA replication. J Virol 75: 6719–6728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Manzano M, Reichert ED, Polo S et al (2011) Identification of cis-acting elements in the 3′-untranslated region of the dengue virus type 2 RNA that modulate translation and replication. J Biol Chem 286: 22521–22534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Tilgner M, Deas TS, Shi P-Y (2005) The flavivirus-conserved penta-nucleotide in the 3′ stem-loop of the West Nile virus genome requires a specific sequence and structure for RNA synthesis, but not for viral translation. Virology 331:375–386

    Article  CAS  PubMed  Google Scholar 

  17. Holden KL, Stein DA, Pierson TC et al (2006) Inhibition of dengue virus translation and RNA synthesis by a morpholino oligomer targeted to the top of the terminal 3′ stem-loop structure. Virology 344:439–452

    Article  CAS  PubMed  Google Scholar 

  18. Chang DC, Liu WJ, Anraku I et al (2008) Single-round infectious particles enhance immunogenicity of a DNA vaccine against West Nile virus. Nat Biotechnol 26:571–577

    Article  CAS  PubMed  Google Scholar 

  19. Harvey TJ, Anraku I, Linedale R et al (2003) Kunjin virus replicon vectors for human immunodeficiency virus vaccine development. J Virol 77:7796–7803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Suzuki R, Winkelmann ER, Mason PW (2009) Construction and characterization of a single-cycle chimeric flavivirus vaccine candidate that protects mice against lethal challenge with dengue virus type 2. J Virol 83(4): 1870–1880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Patkar CG, Larsen M, Owston M et al (2009) Identification of inhibitors of yellow fever virus replication using a replicon-based high-throughput assay. Antimicrob Agents Chemother 53:4103–4114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Puig-Basagoiti F, Qing M, Dong H et al (2009) Identification and characterization of inhibitors of West Nile virus. Antiviral Res 83:71–79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Ishikawa T, Widman DG, Bourne N et al (2008) Construction and evaluation of a chimeric pseudoinfectious virus vaccine to prevent Japanese encephalitis. Vaccine 26:2772–2781

    Article  CAS  PubMed  Google Scholar 

  24. Lo MK, Tilgner M, Shi PY (2003) Potential high-throughput assay for screening inhibitors of West Nile virus replication. J Virol 77(23): 12901–12906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Khromykh AA, Varnavski AN, Westaway EG (1998) Encapsidation of the flavivirus kunjin replicon RNA by using a complementation system providing Kunjin virus structural proteins in trans. J Virol 72:5967–5977

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Pierson TC, Sánchez MD, Puffer BA et al (2006) A rapid and quantitative assay for measuring antibody-mediated neutralization of West Nile virus infection. Virology 346:53–65

    Article  CAS  PubMed  Google Scholar 

  27. Jones CT, Patkar CG, Kuhn RJ (2005) Construction and applications of yellow fever virus replicons. Virology 331:247–259

    Article  CAS  PubMed  Google Scholar 

  28. Scholle F, Girard YA, Zhao Q et al (2004) trans-Packaged West Nile virus-like particles: infectious properties in vitro and in infected mosquito vectors. J Virol 78:11605–11614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Puig-Basagoiti F, Deas TS, Ren P et al (2005) High-throughput assays using a luciferase-expressing replicon, virus-like particles, and full-length virus for West Nile virus drug discovery. Antimicrob Agents Chemother 49: 4980–4988

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Ansarah-Sobrinho C, Nelson S, Jost CA et al (2008) Temperature-dependent production of pseudoinfectious dengue reporter virus particles by complementation. Virology 381:67–74

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Harvey TJ, Liu WJ, Wang XJ et al (2004) Tetracycline-inducible packaging cell line for production of flavivirus replicon particles. J Virol 78:531–538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Mattia K, Puffer BA, Williams KL et al (2011) Dengue reporter virus particles for measuring neutralizing antibodies against each of the four dengue serotypes. PloS One 6:e27252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Dowd KA, Jost CA, Durbin AP et al (2011) A dynamic landscape for antibody binding modulates antibody-mediated neutralization of West Nile virus. PLoS Pathog 7:e1002111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Varnavski AN, Young PR, Khromykh AA (2000) Stable high-level expression of heterologous genes in vitro and in vivo by noncytopathic DNA-based Kunjin virus replicon vectors. J Virol 74:4394–4403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Pierson TC, Diamond MS, Ahmed AA et al (2005) An infectious West Nile virus that expresses a GFP reporter gene. Virology 334:28–40

    Article  CAS  PubMed  Google Scholar 

  36. Yamshchikov V, Mishin V, Cominelli F (2001) A new strategy in design of + RNA virus infectious clones enabling their stable propagation in E. coli. Virology 281:272–280

    Article  CAS  PubMed  Google Scholar 

  37. Mishin VP, Cominelli F, Yamshchikov VF (2001) A “minimal” approach in design of flavivirus infectious DNA. Virus Res 81: 113–123

    Article  CAS  PubMed  Google Scholar 

  38. Varnavski AN, Khromykh AA (1999) Noncytopathic flavivirus replicon RNA-based system for expression and delivery of heterologous genes. Virology 255:366–375

    Article  CAS  PubMed  Google Scholar 

  39. Davis CW, Nguyen H-Y, Hanna SL et al (2006) West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. J Virol 80:1290–1301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Qing M, Liu W, Yuan Z et al (2010) A high-throughput assay using dengue-1 virus-like particles for drug discovery. Antiviral Res 86:163–171

    Article  CAS  PubMed  Google Scholar 

  41. Sukupolvi-Petty S, Austin SK, Engle M et al (2010) Structure and function analysis of therapeutic monoclonal antibodies against dengue virus type 2. J Virol 84:9227–9239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Nelson S, Poddar S, Lin T-Y et al (2009) Protonation of individual histidine residues is not required for the pH-dependent entry of west nile virus: evaluation of the “histidine switch” hypothesis. J Virol 83:12631–12635

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Nelson S, Jost CA, Xu Q et al (2008) Maturation of West Nile virus modulates sensitivity to antibody-mediated neutralization. PLoS Pathog 4:e1000060

    Article  PubMed Central  PubMed  Google Scholar 

  44. Pierson TC, Diamond MS (2012) Degrees of maturity: the complex structure and biology of flaviviruses. Curr Opin Virol 2:168–175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Kuhn RJ, Zhang W, Rossmann MG et al (2002) Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108:717–725

    Article  CAS  PubMed  Google Scholar 

  46. Yu IM, Zhang W, Holdaway HA et al (2008) Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319:1834–1837

    Article  CAS  PubMed  Google Scholar 

  47. Gollins SW, Porterfield JS (1986) The uncoating and infectivity of the flavivirus West Nile on interaction with cells: effects of pH and ammonium chloride. J Gen Virol 67(Pt 9): 1941–1950

    Article  CAS  PubMed  Google Scholar 

  48. Cherrier MV, Kaufmann B, Nybakken GE et al (2009) Structural basis for the preferential recognition of immature flaviviruses by a fusion-loop antibody. EMBO J 28:3269–3276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Lundholt BK, Scudder KM, Pagliaro L (2003) A simple technique for reducing edge effect in cell-based assays. J Biomol Screen 8: 566–570

    Article  CAS  PubMed  Google Scholar 

  50. Pierson TC, Xu Q, Nelson S et al (2007) The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection. Cell Host Microbe 1:135–145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Klasse PJ, Sattentau QJ (2001) Mechanisms of virus neutralization by antibody. Curr Top Microbiol Immunol 260:87–108

    CAS  PubMed  Google Scholar 

  52. Wang P-G, Kudelko M, Lo J et al (2009) Efficient assembly and secretion of recombinant subviral particles of the four dengue serotypes using native prM and E proteins. PloS One 4:e8325

    Article  PubMed Central  PubMed  Google Scholar 

  53. Halstead SB (2003) Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res 60:421–467

    Article  CAS  PubMed  Google Scholar 

  54. Morens DM, Halstead SB, Marchette NJ (1987) Profiles of antibody-dependent enhancement of dengue virus type 2 infection. Microb Pathog 3:231–237

    Article  CAS  PubMed  Google Scholar 

  55. Muñoz-Jordan JL, Sánchez-Burgos GG, Laurent-Rolle M et al (2003) Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci U S A 100:14333–14338

    Article  PubMed Central  PubMed  Google Scholar 

  56. Lok S-M, Kostyuchenko V, Nybakken GE et al (2008) Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins. Nat Struct Mol Biol 15: 312–317

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mukherjee, S., Pierson, T.C., Dowd, K.A. (2014). Pseudo-infectious Reporter Virus Particles for Measuring Antibody-Mediated Neutralization and Enhancement of Dengue Virus Infection. In: Padmanabhan, R., Vasudevan, S. (eds) Dengue. Methods in Molecular Biology, vol 1138. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0348-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0348-1_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0347-4

  • Online ISBN: 978-1-4939-0348-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics