Skip to main content

MPGAfold in Dengue Secondary Structure Prediction

  • Protocol
  • First Online:
Dengue

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1138))

Abstract

This chapter presents the computational prediction of the secondary structures within the 5′ and 3′ untranslated regions of the dengue virus serotype 2 (DENV2), with the focus on the conformational prediction of the two dumbbell-like structures, 5′ DB and 3′ DB, found in the core region of the 3′ untranslated region of DENV2. For secondary structure prediction purposes we used a 719 nt-long subgenomic RNA construct from DENV2, which we refer to as the minigenome. The construct combines the 5′-most 226 nt from the 5′ UTR and a fragment of the capsid coding region with the last 42 nt from the non-structural protein NS5 coding region and the 451 nt of the 3′ UTR. This minigenome has been shown to contain the elements needed for translation, as well as negative strand RNA synthesis. We present the Massively Parallel Genetic Algorithm MPGAfold, a non-deterministic algorithm, that was used to predict the secondary structures of the DENV2 719 nt long minigenome construct, as well as our computational workbench called StructureLab that was used to interactively explore the solution spaces produced by MPGAfold. The MPGAfold algorithm is first introduced at the conceptual level. Then specific parameters guiding its performance are discussed and illustrated with a representative selection of the results from the study. Plots of the solution spaces generated by MPGAfold illustrate the algorithm, while selected secondary structures focus on variable formation of the dumbbell structures and other identified structural motifs. They also serve as illustrations of some of the capabilities of the StructureLab workbench. Results of the computational structure determination calculations are discussed and compared to the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Westaway EG, Mackenzie JM, Khromykh AA (2003) Kunjin RNA replication and applications of Kunjin replicons. Adv Virus Res 59:99–140

    Article  CAS  PubMed  Google Scholar 

  2. Gubler DJ (1998) Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11: 480–496

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Halstead SB, Lan NT, Myint TT, Shwe TN, Nisalak A, Kalyanarooj S, Nimmannitya S, Soegijanto S, Vaughn DW, Endy TP (2002) Dengue hemorrhagic fever in infants: research opportunities ignored. Emerg Infect Dis 8: 1474–1479

    Article  PubMed Central  PubMed  Google Scholar 

  4. Monath TP (1994) Dengue: the risk to developed and developing countries. Proc Natl Acad Sci U S A 91:2395–2400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Gould EA, de Lamballerie X, Zanotto PM, Holmes EC (2001) Evolution, epidemiology, and dispersal of flaviviruses revealed by molecular phylogenies. Adv Virus Res 57:71–103

    Article  CAS  PubMed  Google Scholar 

  6. Heinz FX, Allison SL (2000) Structures and mechanisms in flavivirus fusion. Adv Virus Res 55:231–269

    Article  CAS  PubMed  Google Scholar 

  7. Irie K, Mohan PM, Sasaguri Y, Putnak R, Padmanabhan R (1989) Sequence analysis of cloned dengue virus type 2 genome (New Guinea-C strain). Gene 75:197–211

    Article  CAS  PubMed  Google Scholar 

  8. Lindenbach BD, Rice CM (2003) Molecular biology of flaviviruses. Adv Virus Res 59: 23–61

    Article  CAS  PubMed  Google Scholar 

  9. Alvarez DE, De Lella Ezcurra AL, Fucito S, Gamarnik AV (2005) Role of RNA structures present at the 3'UTR of dengue virus on translation, RNA synthesis, and viral replication. Virology 339:200–212

    Article  CAS  PubMed  Google Scholar 

  10. Alvarez DE, Filomatori CV, Gamarnik AV (2008) Functional analysis of dengue virus cyclization sequences located at the 5' and 3'UTRs. Virology 375:223–235

    Article  CAS  PubMed  Google Scholar 

  11. Alvarez DE, Lodeiro MF, Luduena SJ, Pietrasanta LI, Gamarnik AV (2005) Long-range RNA-RNA interactions circularize the dengue virus genome. J Virol 79:6631–6643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Chiu WW, Kinney RM, Dreher TW (2005) Control of translation by the 5'- and 3'-terminal regions of the dengue virus genome. J Virol 79:8303–8315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Filomatori CV, Lodeiro MF, Alvarez DE, Samsa MM, Pietrasanta L, Gamarnik AV (2006) A 5' RNA element promotes dengue virus RNA synthesis on a circular genome. Genes Dev 20:2238–2249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Holden KL, Harris E (2004) Enhancement of dengue virus translation: role of the 3' untranslated region and the terminal 3' stem-loop domain. Virology 329:119–133

    Article  CAS  PubMed  Google Scholar 

  15. Khromykh AA, Meka H, Guyatt KJ, Westaway EG (2001) Essential role of cyclization sequences in flavivirus RNA replication. J Virol 75:6719–6728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Lo MK, Tilgner M, Bernard KA, Shi PY (2003) Functional analysis of mosquito-borne flavivirus conserved sequence elements within 3' untranslated region of West Nile virus by use of a reporting replicon that differentiates between viral translation and RNA replication. J Virol 77:10004–10014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Men R, Bray M, Clark D, Chanock RM, Lai CJ (1996) Dengue type 4 virus mutants containing deletions in the 3' noncoding region of the RNA genome: analysis of growth restriction in cell culture and altered viremia pattern and immunogenicity in rhesus monkeys. J Virol 70:3930–3937

    CAS  PubMed Central  PubMed  Google Scholar 

  18. You S, Padmanabhan R (1999) A novel in vitro replication system for Dengue virus. Initiation of RNA synthesis at the 3'-end of exogenous viral RNA templates requires 5'- and 3'-terminal complementary sequence motifs of the viral RNA. J Biol Chem 274:33714–33722

    Article  CAS  PubMed  Google Scholar 

  19. Mukhopadhyay S, Kuhn RJ, Rossmann MG (2005) A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3:13–22

    Article  CAS  PubMed  Google Scholar 

  20. Perera R, Kuhn RJ (2008) Structural proteomics of dengue virus. Curr Opin Microbiol 11:369–377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Westaway EG, Mackenzie JM, Khromykh AA (2002) Replication and gene function in Kunjin virus. Curr Top Microbiol Immunol 267:323–351

    CAS  PubMed  Google Scholar 

  22. Bartenschlager R, Miller S (2008) Molecular aspects of Dengue virus replication. Future Microbiol 3:155–165

    Article  CAS  PubMed  Google Scholar 

  23. Brinton MA, Dispoto JH (1988) Sequence and secondary structure analysis of the 5'-terminal region of flavivirus genome RNA. Virology 162:290–299

    Article  CAS  PubMed  Google Scholar 

  24. Cahour A, Pletnev A, Vazielle-Falcoz M, Rosen L, Lai CJ (1995) Growth-restricted dengue virus mutants containing deletions in the 5' noncoding region of the RNA genome. Virology 207:68–76

    Article  CAS  PubMed  Google Scholar 

  25. Clyde K, Barrera J, Harris E (2008) The capsid-coding region hairpin element (cHP) is a critical determinant of dengue virus and West Nile virus RNA synthesis. Virology 379:314–323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Clyde K, Harris E (2006) RNA secondary structure in the coding region of dengue virus type 2 directs translation start codon selection and is required for viral replication. J Virol 80:2170–2182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Friebe P, Harris E (2010) Interplay of RNA elements in the dengue virus 5' and 3' ends required for viral RNA replication. J Virol 84:6103–6118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Friebe P, Shi PY, Harris E (2011) The 5' and 3' downstream AUG region elements are required for mosquito-borne flavivirus RNA replication. J Virol 85:1900–1905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Manzano M, Reichert ED, Polo S, Falgout B, Kasprzak W, Shapiro BA, Padmanabhan R (2011) Identification of cis-acting elements in the 3'-untranslated region of the dengue virus type 2 RNA that modulate translation and replication. J Biol Chem 286:22521–22534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Zeng L, Falgout B, Markoff L (1998) Identification of specific nucleotide sequences within the conserved 3'-SL in the dengue type 2 virus genome required for replication. J Virol 72:7510–7522

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Brinton MA, Fernandez AV, Dispoto JH (1986) The 3'-nucleotides of flavivirus genomic RNA form a conserved secondary structure. Virology 153:113–121

    Article  CAS  PubMed  Google Scholar 

  32. Mohan PM, Padmanabhan R (1991) Detection of stable secondary structure at the 3' terminus of dengue virus type 2 RNA. Gene 108:185–191

    Article  CAS  PubMed  Google Scholar 

  33. Elghonemy S, Davis WG, Brinton MA (2005) The majority of the nucleotides in the top loop of the genomic 3' terminal stem loop structure are cis-acting in a West Nile virus infectious clone. Virology 331:238–246

    Article  CAS  PubMed  Google Scholar 

  34. Holden KL, Stein DA, Pierson TC, Ahmed AA, Clyde K, Iversen PL, Harris E (2006) Inhibition of dengue virus translation and RNA synthesis by a morpholino oligomer targeted to the top of the terminal 3' stem-loop structure. Virology 344:439–452

    Article  CAS  PubMed  Google Scholar 

  35. Markoff L (2003) 5'- and 3'-noncoding regions in flavivirus RNA. Adv Virus Res 59:177–228

    Article  CAS  PubMed  Google Scholar 

  36. Yu L, Markoff L (2005) The topology of bulges in the long stem of the flavivirus 3' stem-loop is a major determinant of RNA replication competence. J Virol 79:2309–2324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Hahn CS, Hahn YS, Rice CM, Lee E, Dalgarno L, Strauss EG, Strauss JH (1987) Conserved elements in the 3' untranslated region of flavivirus RNAs and potential cyclization sequences. J Mol Biol 198:33–41

    Article  CAS  PubMed  Google Scholar 

  38. You S, Falgout B, Markoff L, Padmanabhan R (2001) In vitro RNA synthesis from exogenous dengue viral RNA templates requires long range interactions between 5'- and 3'-terminal regions that influence RNA structure. J Biol Chem 276:15581–15591

    Article  CAS  PubMed  Google Scholar 

  39. Corver J, Lenches E, Smith K, Robison RA, Sando T, Strauss EG, Strauss JH (2003) Fine mapping of a cis-acting sequence element in yellow fever virus RNA that is required for RNA replication and cyclization. J Virol 77:2265–2270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Suzuki R, Fayzulin R, Frolov I, Mason PW (2008) Identification of mutated cyclization sequences that permit efficient replication of West Nile virus genomes: use in safer propagation of a novel vaccine candidate. J Virol 82:6942–6951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Zhang B, Dong H, Stein DA, Iversen PL, Shi PY (2008) West Nile virus genome cyclization and RNA replication require two pairs of long-distance RNA interactions. Virology 373:1–13

    Article  CAS  PubMed  Google Scholar 

  42. Olsthoorn RC, Bol JF (2001) Sequence comparison and secondary structure analysis of the 3' noncoding region of flavivirus genomes reveals multiple pseudoknots. RNA 7:1370–1377

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Proutski V, Gould EA, Holmes EC (1997) Secondary structure of the 3' untranslated region of flaviviruses: similarities and differences. Nucleic Acids Res 25:1194–1202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Kasprzak W, Shapiro B (1999) Stem Trace: an interactive visual tool for comparative RNA structure analysis. Bioinformatics 15:16–31

    Article  CAS  PubMed  Google Scholar 

  45. Shapiro BA, Bengali D, Kasprzak W, Wu JC (2001) RNA folding pathway functional intermediates: their prediction and analysis. J Mol Biol 312:27–44

    Article  CAS  PubMed  Google Scholar 

  46. Shapiro BA, Kasprzak W (1996) STRUCTURELAB: a heterogeneous bioinformatics system for RNA structure analysis. J Mol Graph 14:194–205

    Article  CAS  PubMed  Google Scholar 

  47. Shapiro BA, Kasprzak W, Grunewald C, Aman J (2006) Graphical exploratory data analysis of RNA secondary structure dynamics predicted by the massively parallel genetic algorithm. J Mol Graph Model 25:514–531

    Article  CAS  PubMed  Google Scholar 

  48. Shapiro BA, Navetta J (1994) A massively parallel genetic algorithm for RNA secondary structure prediction. J Supercomputing 8:195–207

    Article  Google Scholar 

  49. Shapiro BA, Wu JC (1996) An annealing mutation operator in the genetic algorithms for RNA folding. Comput Appl Biosci 12:171–180

    CAS  PubMed  Google Scholar 

  50. Shapiro BA, Wu JC (1997) Predicting RNA H-type pseudoknots with the massively parallel genetic algorithm. Comput Appl Biosci 13:459–471

    CAS  PubMed  Google Scholar 

  51. Shapiro BA, Wu JC, Bengali D, Potts MJ (2001) The massively parallel genetic algorithm for RNA folding: MIMD implementation and population variation. Bioinformatics 17:137–148

    Article  CAS  PubMed  Google Scholar 

  52. Wu JC, Shapiro BA (1999) A Boltzmann filter improves the prediction of RNA folding pathways in a massively parallel genetic algorithm. J Biomol Struct Dyn 17:581–595

    Article  CAS  PubMed  Google Scholar 

  53. Edgil D, Polacek C, Harris E (2006) Dengue virus utilizes a novel strategy for translation initiation when cap-dependent translation is inhibited. J Virol 80:2976–2986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Ackermann M, Padmanabhan R (2001) De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase. J Biol Chem 276: 39926–39937

    Article  CAS  PubMed  Google Scholar 

  55. Nomaguchi M, Ackermann M, Yon C, You S, Padmanabhan R (2003) De novo synthesis of negative-strand RNA by Dengue virus RNA-dependent RNA polymerase in vitro: nucleotide, primer, and template parameters. J Virol 77:8831–8842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Leontis NB, Westhof E (2001) Geometric nomenclature and classification of RNA base pairs. RNA 7:499–512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31: 3429–3431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940

    Article  CAS  PubMed  Google Scholar 

  60. Mathews DH, Turner DH (2006) Prediction of RNA secondary structure by free energy minimization. Curr Opin Struct Biol 16:270–278

    Article  CAS  PubMed  Google Scholar 

  61. Shapiro BA, Yingling YG, Kasprzak W, Bindewald E (2007) Bridging the gap in RNA structure prediction. Curr Opin Struct Biol 17:157–165

    Article  CAS  PubMed  Google Scholar 

  62. Holland JH (1992) Adaptation in natural and artificial systems: An introductory analysis with applications in biology, control, and artificial intelligence. MIT Press, Cambridge, MA

    Google Scholar 

  63. Gee AH, Kasprzak W, Shapiro BA (2006) Structural differentiation of the HIV-1 polyA signals. J Biomol Struct Dyn 23:417–428

    Article  CAS  PubMed  Google Scholar 

  64. Kasprzak W, Bindewald E, Shapiro BA (2005) Structural polymorphism of the HIV-1 leader region explored by computational methods. Nucleic Acids Res 33:7151–7163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Linnstaedt SD, Kasprzak WK, Shapiro BA, Casey JL (2006) The role of a metastable RNA secondary structure in hepatitis delta virus genotype III RNA editing. RNA 12: 1521–1533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Linnstaedt SD, Kasprzak WK, Shapiro BA, Casey JL (2009) The fraction of RNA that folds into the correct branched secondary structure determines hepatitis delta virus type 3 RNA editing levels. RNA 15:1177–1187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Bindewald E, Kluth T, Shapiro BA (2010) CyloFold: secondary structure prediction including pseudoknots. Nucleic Acids Res 38:368–372

    Article  Google Scholar 

  68. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer M, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monat Chem 125:167–188

    Article  CAS  Google Scholar 

  69. Hofacker IL, Stadler PF (2006) Memory efficient folding algorithms for circular RNA secondary structures. Bioinformatics 22: 1172–1176

    Article  CAS  PubMed  Google Scholar 

  70. Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A 101:7287–7292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Sztuba-Solinska J, Teramoto T, Rausch JW, Shapiro BA, Padmanabhan R, Le Grice SF (2013) Structural complexity of Dengue virus untranslated regions: cis-acting RNA motifs and pseudoknot interactions modulating functionality of the viral genome. Nucleic Acids Res 41:5075–5089

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This publication has been funded in part with Federal funds from the Frederick National Laboratory for Cancer Research, National Institutes of Health, under Contract No. HHSN261200800001E. This research was supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Shapiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kasprzak, W.K., Shapiro, B.A. (2014). MPGAfold in Dengue Secondary Structure Prediction. In: Padmanabhan, R., Vasudevan, S. (eds) Dengue. Methods in Molecular Biology, vol 1138. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0348-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0348-1_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0347-4

  • Online ISBN: 978-1-4939-0348-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics