Skip to main content

Advances in Host and Vector Development for the Production of Plasmid DNA Vaccines

  • Protocol
  • First Online:
Book cover Cancer Vaccines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1139))

Abstract

Recent developments in DNA vaccine research provide a new momentum for this rather young and potentially disruptive technology. Gene-based vaccines are capable of eliciting protective immunity in humans to persistent intracellular pathogens, such as HIV, malaria, and tuberculosis, for which the conventional vaccine technologies have failed so far. The recent identification and characterization of genes coding for tumor antigens has stimulated the development of DNA-based antigen-specific cancer vaccines. Although most academic researchers consider the production of reasonable amounts of plasmid DNA (pDNA) for immunological studies relatively easy to solve, problems often arise during this first phase of production. In this chapter we review the current state of the art of pDNA production at small (shake flasks) and mid-scales (lab-scale bioreactor fermentations) and address new trends in vector design and strain engineering. We will guide the reader through the different stages of process design starting from choosing the most appropriate plasmid backbone, choosing the right Escherichia coli (E. coli) strain for production, and cultivation media and scale-up issues. In addition, we will address some points concerning the safety and potency of the produced plasmids, with special focus on producing antibiotic resistance-free plasmids. The main goal of this chapter is to make immunologists aware of the fact that production of the pDNA vaccine has to be performed with as much as attention and care as the rest of their research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rein DT et al (2006) Current developments in adenovirus-based cancer gene therapy. Future Oncol 2:137–143

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Erbs P et al (2008) Modified vaccinia virus Ankara as a vector for suicide gene therapy. Cancer Gene Ther 15:18–28

    CAS  PubMed  Google Scholar 

  3. Cubas R et al (2011) Chimeric Trop2 virus-like particles: a potential immunotherapeutic approach against pancreatic cancer. J Immunother 34:251–263

    CAS  PubMed  Google Scholar 

  4. Kaczmarczyk SJ et al (2011) Protein delivery using engineered virus-like particles. Proc Natl Acad Sci USA 108:16998–17003

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Fioretti D et al (2010) DNA vaccines: developing new strategies against cancer. J Biomed Biotechnol 2010:174378

    PubMed  PubMed Central  Google Scholar 

  6. Rice J et al (2008) DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 8:108–120

    CAS  PubMed  Google Scholar 

  7. Weide B et al (2008) Plasmid DNA- and messenger RNA-based anti-cancer vaccination. Immunol Lett 115:33–42

    CAS  PubMed  Google Scholar 

  8. Staff C et al (2011) A Phase I safety study of plasmid DNA immunization targeting carcinoembryonic antigen in colorectal cancer patients. Vaccine 29:6817–6822

    CAS  PubMed  Google Scholar 

  9. Cohen S et al (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci USA 70:3240–3244

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hershfield V et al (1974) Plasmid ColEl as a molecular vehicle for cloning and amplification of DNA. Proc Natl Acad Sci USA 71:3455–3459

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cunningham D et al (2009) Factors affecting plasmid production in Escherichia coli from a resource allocation standpoint. Microb Cell Fact 8:27

    PubMed  PubMed Central  Google Scholar 

  12. Castagnoli L et al (1989) Genetic and structural analysis of the ColE1 Rop (Rom) protein. EMBO J 8:621–629

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dong X et al (2004) PlasMapper: a web server for drawing and auto-annotating plasmid maps. Nucleic Acids Res 32:W660–W664

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bond SR, Naus CC (2012) RF-Cloning.org: an online tool for the design of restriction-free cloning projects. Nucleic Acids Res 40(W1):W209–W213

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bryksin AV, Matsumura I (2010) Overlap extension PCR cloning: a simple and reliable way to create recombinant plasmids. Biotechniques 48:463–465

    CAS  PubMed  PubMed Central  Google Scholar 

  16. FDA (1996) Points to consider on plasmid DNA vaccines for preventive infectious disease indications. Center for Biologics Evaluation and Research, Docket No. 96N-0400

    Google Scholar 

  17. EMEA (2008) Questions and answers on gene therapy. Doc. Ref: EMA/CHMP/GTWP/212377/2008 ed., European Medicines Agency

    Google Scholar 

  18. Belt A (1996) Characterization of cultures used for biotechnology and industry. In: Hunter-Cevera JC (ed) Maintaining cultures for biotechnology and industry. Academic Press, London

    Google Scholar 

  19. Harms JS, Splitter GA (1995) Interferon-gamma inhibits transgene expression driven by SV40 or CMV promoters but augments expression driven by the mammalian MHC I promoter. Hum Gene Ther 6:1291–1297

    CAS  PubMed  Google Scholar 

  20. Gribaudo G et al (1993) Interferons inhibit onset of murine cytomegalovirus immediate-early gene transcription. Virology 197:303–311

    CAS  PubMed  Google Scholar 

  21. Grabherr MG et al (2011) Exploiting nucleotide composition to engineer promoters. PLoS One 6:e20136

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Baumann M et al (2012) Artificially designed promoters: understanding the role of spatial features and canonical binding sites in transcription. Bioeng Bugs 3(2):120–123

    PubMed  Google Scholar 

  23. Samadashwily G et al (1997) Trinucleotide repeats affect DNA replication in vivo. Nat Genet 17:298–304

    CAS  PubMed  Google Scholar 

  24. Williams J et al (2006) pDNAVACCultra vector family: high throughput intracellular targeting DNA vaccine plasmids. Vaccine 24:4671–4676

    CAS  PubMed  Google Scholar 

  25. Kushner P et al (1994) Eukaryotic regulatory elements lurking in plasmid DNA: the activator protein-1 site in pUC. Mol Endocrinol 8:405–407

    CAS  PubMed  Google Scholar 

  26. Ghersa P et al (1994) Commonly used cat reporter vectors contain a cAMP-inducible, cryptic enhancer that co-operates with NF-kappa B-sites. Gene 151:331–332

    CAS  PubMed  Google Scholar 

  27. Tully D, Cidlowski J (1987) pBR322 contains glucocorticoid regulatory element DNA consensus sequences. Biochem Biophys Res Commun 144:1–110

    CAS  PubMed  Google Scholar 

  28. Peterson D et al (1987) Context-dependent gene expression: cis-acting negative effects of specific procaryotic plasmid sequences on eucaryotic genes. Mol Cell Biol 7:1563–1567

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fath S et al (2011) Multiparameter RNA and codon optimization: a standardized tool to assess and enhance autologous mammalian gene expression. PLoS One 6:e17596

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Welch M et al (2009) Design parameters to control synthetic gene expression in Escherichia coli. PLoS One 4:e7002

    PubMed  PubMed Central  Google Scholar 

  31. Hellen CU, Sarnow P (2001) Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15:1593–1612

    CAS  PubMed  Google Scholar 

  32. Jang SK et al (1988) A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62:2636–2643

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bei R, Scardino A (2010) TAA polyepitope DNA-based vaccines: a potential tool for cancer therapy. J Biomed Biotechnol 2010:102758

    PubMed  PubMed Central  Google Scholar 

  34. Mir FA et al (2009) A multicistronic DNA vaccine induces significant protection against tuberculosis in mice and offers flexibility in the expressed antigen repertoire. Clin Vaccine Immunol 16:1467–1475

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yan J et al (2006) Enhanced cellular immune responses elicited by an engineered HIV-1 Subtype B consensus-based envelope DNA vaccine. Mol Ther 15:411–421

    Google Scholar 

  36. Laddy DJ et al (2007) Immunogenicity of novel consensus-based DNA vaccines against avian influenza. Vaccine 25:2984–2989

    CAS  PubMed  Google Scholar 

  37. van der Bruggen P, Van den Eynde BJ (2006) Processing and presentation of tumor antigens and vaccination strategies. Curr Opin Immunol 18:98–104

    PubMed  Google Scholar 

  38. Rice J et al (2002) Critical components of a DNA fusion vaccine able to induce protective cytotoxic T cells against a single epitope of a tumor antigen. J Immunol 169:3908–3913

    CAS  PubMed  Google Scholar 

  39. Radcliffe JN et al (2006) Prime-boost with alternating DNA vaccines designed to engage different antigen presentation pathways generates high frequencies of peptide-specific CD8+ T cells. J Immunol 177:6626–6633

    CAS  PubMed  Google Scholar 

  40. Oosterhuis K et al (2011) Preclinical development of highly effective and safe DNA vaccines directed against HPV 16 E6 and E7. Int J Cancer 129:397–406

    CAS  PubMed  Google Scholar 

  41. Biragyn A et al (2002) Toll-like receptor 4-dependent activation of dendritic cells by β-defensin 2. Science 298:1025–1029

    CAS  PubMed  Google Scholar 

  42. Biragyn A et al (2001) Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. J Immunol 167:6644–6653

    CAS  PubMed  Google Scholar 

  43. Wang YS et al (2007) Immunity against tumor angiogenesis induced by a fusion vaccine with murine β-defensin 2 and mFlk-1. Clin Cancer Res 13:6779–6787

    CAS  PubMed  Google Scholar 

  44. Mei HF et al (2012) Beta-defensin 2 as an adjuvant promotes anti-melanoma immune responses and inhibits the growth of implanted murine melanoma in vivo. PLoS One 7:e31328

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wei Y et al (2012) Enhancement of DNA vaccine efficacy by targeting the xenogeneic human chorionic gonadotropin, survivin and vascular endothelial growth factor receptor 2 combined tumor antigen to the major histocompatibility complex class II pathway. J Gene Med 14:353–362

    CAS  PubMed  Google Scholar 

  46. Guan QD et al (2007) The distinct effects of three tandem repeats of C3d in the immune responses against tumor-associated antigen hCGbeta by DNA immunization. Cancer Immunol Immunother 56:875–884

    CAS  PubMed  Google Scholar 

  47. Shi SQ et al (2005) The mouse chorionic gonadotropin beta-subunit-like (muCG beta l) molecule produced by tumor cells elicits the switch of T-cell immunity response from TH2 to TH1 in mice immunized with DNA vaccine based on rhesus monkey homologous CG beta (rmCG beta). J Gene Med 7:87–96

    CAS  PubMed  Google Scholar 

  48. Holst PJ et al (2010) DNA fusion gene vaccines. Curr Opin Mol Ther 12:47–54

    CAS  PubMed  Google Scholar 

  49. Azzoni A et al (2007) The impact of polyadenylation signals on plasmid nuclease-resistance and transgene expression. J Gene Med 9:392–402

    CAS  PubMed  Google Scholar 

  50. Ribeiro S et al (2004) The role of polyadenylation signal secondary structures on the resistance of plasmid vectors to nucleases. J Gene Med 6:565–573

    CAS  PubMed  Google Scholar 

  51. Ribeiro S et al (2012) Plasmid DNA size does affect nonviral gene delivery efficiency in stem cells. Cell Reprogram 14:130–137

    CAS  PubMed  Google Scholar 

  52. Luke JM et al (2011) Improved antibiotic-free plasmid vector design by incorporation of transient expression enhancers. Gene Ther 18:334–343

    CAS  PubMed  Google Scholar 

  53. Arnott S (2006) Historical article: DNA polymorphism and the early history of the double helix. Trends Biochem Sci 31:349–354

    CAS  PubMed  Google Scholar 

  54. Marvin D et al (1961) The molecular configuration of deoxyribonucleic acid. III. X-ray diffraction study of the C form of the lithium salt. J Mol Biol 3:547–565

    CAS  PubMed  Google Scholar 

  55. Arnott S et al (1974) Structural details of double-helix observed for DNAs containing alternating purine and pyrimidine sequences. J Mol Biol 88:523–533

    CAS  PubMed  Google Scholar 

  56. Vargason J et al (2000) The extended and eccentric E-DNA structure induced by cytosine methylation or bromination. Nat Struct Biol 7:758–761

    CAS  PubMed  Google Scholar 

  57. Mirkin S et al (1987) DNA H form requires a homopurine-homopyrimidine mirror repeat. Nature 330:495–497

    CAS  PubMed  Google Scholar 

  58. Hayashi G et al (2005) Application of L-DNA as a molecular tag. Nucleic Acids Symp Ser (Oxf) 49:261–262

    Google Scholar 

  59. Allemand J et al (1998) Stretched and overwound DNA forms a Pauling-like structure with exposed bases. Proc Natl Acad Sci USA 95:14152–14157

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Paddock G, Abelson J (1975) Nucleotide sequence determination of bacteriophage T2 and T6 species I ribonucleic acids. J Biol Chem 250:4207–4219

    CAS  PubMed  Google Scholar 

  61. Wang A et al (1979) Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282:680–686

    CAS  PubMed  Google Scholar 

  62. Cherng J et al (1999) Effect of DNA topology on the transfection efficiency of poly((2-dimethylamino)ethyl methacrylate)-plasmid complexes. J Control Release 60:343–353

    CAS  PubMed  Google Scholar 

  63. Ussery D et al (2002) Bias of purine stretches in sequenced chromosomes. Comput Chem 26:531–541

    CAS  PubMed  Google Scholar 

  64. Cooke J et al (2004) Impact of intrinsic DNA structure on processing of plasmids for gene therapy and DNA vaccines. J Biotechnol 114:239–254

    CAS  PubMed  Google Scholar 

  65. Yau S et al (2008) Host strain influences on supercoiled plasmid DNA production in Escherichia coli: implications for efficient design of large-scale processes. Biotechnol Bioeng 101:529–544

    CAS  PubMed  Google Scholar 

  66. Zaman MM, Boles TC (1996) Plasmid recombination by the RecBCD pathway of Escherichia coli. J Bacteriol 178:3840–3845

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lovett ST (2004) Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Mol Microbiol 52:1243–1253

    CAS  PubMed  Google Scholar 

  68. Bi X, Liu LF (1996) DNA rearrangement mediated by inverted repeats. Proc Natl Acad Sci USA 93:819–823

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Oliveira PH et al (2009) Structural instability of plasmid biopharmaceuticals: challenges and implications. Trends Biotechnol 27:503–511

    CAS  PubMed  Google Scholar 

  70. Oliveira PH et al (2010) Analysis of DNA repeats in bacterial plasmids reveals the potential for recurrent instability events. Appl Microbiol Biotechnol 87:2157–2167

    CAS  PubMed  Google Scholar 

  71. Ribeiro S et al (2008) High frequency plasmid recombination mediated by 28 bp direct repeats. Mol Biotechnol 40:252–260

    CAS  PubMed  Google Scholar 

  72. Betley JN et al (2002) A ubiquitous and conserved signal for RNA localization in chordates. Curr Biol 12:1756–1761

    CAS  PubMed  Google Scholar 

  73. Ho PS et al (1986) A computer aided thermodynamic approach for predicting the formation of Z-DNA in naturally occurring sequences. EMBO J 5:2737–2744

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Oliveira PH et al (2008) Recombination frequency in plasmid DNA containing direct repeats–predictive correlation with repeat and intervening sequence length. Plasmid 60:159–165

    CAS  PubMed  Google Scholar 

  75. Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62:725–774

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Varani AM et al (2011) ISsaga is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes. Genome Biol 12(3):R30

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Prather K et al (2006) Identification and characterization of IS1 transposition in plasmid amplification mutants of E. coli clones producing DNA vaccines. Appl Microbiol Biotechnol 73:815–826

    PubMed  Google Scholar 

  78. Oliveira PH et al (2009) Deletion formation mutations in plasmid expression vectors are unfavored by runaway amplification conditions and differentially selected under kanamycin stress. J Biotechnol 143:231–238

    CAS  PubMed  Google Scholar 

  79. Umenhoffer K et al (2010) Reduced evolvability of Escherichia coli MDS42, an IS-less cellular chassis for molecular and synthetic biology applications. Microb Cell Fact 9:38

    PubMed  PubMed Central  Google Scholar 

  80. Pósfai G et al (2006) Emergent properties of reduced-genome Escherichia coli. Science 312:1044–1046

    PubMed  Google Scholar 

  81. Casali N (2003) Escherichia coli host strains. In: Casali N, Preston A (ed) Methods in Molecular Biol 235:27–48

    Google Scholar 

  82. Schnarr M et al (1985) Large-scale purification, oligomerization equilibria, and specific interaction of the LexA repressor of Escherichia coli. Biochemistry 24:2812–2818

    CAS  PubMed  Google Scholar 

  83. Schnarr M et al (1985) The LexA repressor of Escherichia coli. Biol Chem Hoppe Seyler 366:847–848

    Google Scholar 

  84. Summers D (1996) The biology of plasmids. Blackwell Science Ltd., Oxford, England

    Google Scholar 

  85. Phue J et al (2008) Modified Escherichia coli B (BL21), a superior producer of plasmid DNA compared with Escherichia coli K (DH5 alpha). Biotechnol Bioeng 101:831–836

    CAS  PubMed  Google Scholar 

  86. Bower D, Prather K (2009) Engineering of bacterial strains and vectors for the production of plasmid DNA. Appl Microbiol Biotechnol 82:805–813

    CAS  PubMed  Google Scholar 

  87. Singer A et al (2009) DNA plasmid production in different host strains of Escherichia coli. J Ind Microbiol Biotechnol 36:521–530

    CAS  PubMed  Google Scholar 

  88. Xia X et al (2011) Comparative proteomic and genetic analyses reveal unidentified mutations in Escherichia coli XL1-Blue and DH5 alpha. Fems Microbiol Lett 314:119–124

    CAS  PubMed  Google Scholar 

  89. van der Heijden I et al (2013) Transposon leads to contamination of clinical pDNA vaccine. Vaccine 31:3274–3280

    PubMed  Google Scholar 

  90. O'Kennedy R et al (2003) Effects of fermentation strategy on the characteristics of plasmid DNA production. Biotechnol Appl Biochem 37:83–90

    PubMed  Google Scholar 

  91. Zheng S et al (2007) Optimization of medium components for plasmid production by recombinant E-coli DH5 alpha pUK21CMV beta 1.2. Biotechnol Bioprocess Eng 12:213–221

    CAS  Google Scholar 

  92. Duttweiler H, Gross D (1998) Growth medium that significantly increases the yield of recombinant plasmid (vol 24, pg 438, 1998). Biotechniques 24:992

    Google Scholar 

  93. Danquah M, Forde G (2007) Growth medium selection and its economic impact on plasmid DNA production. J Biosci Bioeng 104:490–497

    CAS  PubMed  Google Scholar 

  94. Danquah M, Forde G (2008) Development of a pilot-scale bacterial fermentation for plasmid-based biopharmaceutical production using a stoichiometric medium. Biotechnol Bioprocess Eng 13:158–167

    CAS  Google Scholar 

  95. Ongkudon C et al (2011) Cultivation of E. coli carrying a plasmid-based measles vaccine construct (4.2 kbp pcDNA3F) employing medium optimisation and pH-temperature induction techniques. Microb Cell Fact 10:16

    CAS  PubMed  PubMed Central  Google Scholar 

  96. O'Kennedy R et al (2000) Effects of growth medium selection on plasmid DNA production and initial processing steps. J Biotechnol 76:175–183

    PubMed  Google Scholar 

  97. Zawada J, Swartz J (2005) Maintaining rapid growth in moderate-density Escherichia coli fermentations. Biotechnol Bioeng 89:407–415

    CAS  PubMed  Google Scholar 

  98. Voss C et al (2004) Effect of ammonium chloride on plasmid DNA production in high cell density batch culture for biopharmaceutical use. J Chem Technol Biotechnol 79:57–62

    CAS  Google Scholar 

  99. Wang Z et al (2001) Medium design for plasmid DNA production based on stoichiometric model. Process Biochem 36:1085–1093

    CAS  Google Scholar 

  100. Ukkonen K et al (2011) High-yield production of biologically active recombinant protein in shake flask culture by combination of enzyme-based glucose delivery and increased oxygen transfer. Microb Cell Fact 10:107

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Scheidle M et al (2011) Controlling pH in shake flasks using polymer-based controlled-release discs with pre-determined release kinetics. BMC Biotechnol 11:25

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Papagianni M (2012) Recent advances in engineering the central carbon metabolism of industrially important bacteria. Microb Cell Fact 11:50

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Lara AR (2011) Recombinant protein production in Escherichia coli. Revista Mexicana De Ingenieria Quimica 10:209–223

    CAS  Google Scholar 

  104. Flores S et al (2004) Growth-rate recovery of Escherichia coli cultures carrying a multicopy plasmid, by engineering of the pentose-phosphate pathway. Biotechnol Bioeng 87:485–494

    CAS  PubMed  Google Scholar 

  105. Williams J et al (2009) Generic plasmid DNA production platform incorporating low metabolic burden seed-stock and fed-batch fermentation processes. Biotechnol Bioeng 103:1129–1143

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Cunningham D et al (2009) Pyruvate kinase-deficient Escherichia coli exhibits increased plasmid copy number and cyclic AMP levels. J Bacteriol 191:3041–3049

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Goncalvez GAL et al. J. De novo creation of MG1655-derived E. coli strains specifically designed for plasmid DNA production. Appl Microbiol Biotechnol 97(2):611–620

    Google Scholar 

  108. Hua Q et al (2003) Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. J Bacteriol 185:7053–7067

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang Z et al (2006) Effect of the presence of ColE1 plasmid DNA in Escherichia coli on the host cell metabolism. Microb Cell Fact 5:34

    PubMed  PubMed Central  Google Scholar 

  110. Carnes A et al (2011) Plasmid DNA fermentation strain and process-specific effects on vector yield, quality, and transgene expression. Biotechnol Bioeng 108:354–363

    CAS  PubMed  Google Scholar 

  111. Ow D et al (2009) Enhancement of plasmid DNA yields during fed-batch culture of a fruR-knockout Escherichia coli strain. Biotechnol Appl Biochem 52:53–59

    CAS  PubMed  Google Scholar 

  112. Ow D et al (2007) Inactivating FruR global regulator in plasmid-bearing Escherichia coli alters metabolic gene expression and improves growth rate. J Biotechnol 131:261–269

    CAS  PubMed  Google Scholar 

  113. Ow D et al (2006) Global transcriptional analysis of metabolic burden due to plasmid maintenance in Escherichia coli DH5 alpha during batch fermentation. Enzyme Microb Technol 39:391–398

    CAS  Google Scholar 

  114. Rozkov A et al (2004) Characterization of the metabolic burden on Escherichia coli DH1 cells imposed by the presence of a plasmid containing a gene therapy sequence. Biotechnol Bioeng 88:909–915

    CAS  PubMed  Google Scholar 

  115. Grabherr R et al (2011) Method for controlling plasmid copy number in E. coli. (Organization, W. I. P., Ed.).

    Google Scholar 

  116. Borja GM et al (2012) Engineering Escherichia coli to increase plasmid DNA production in high cell-density cultivations in batch mode. Microb Cell Fact 11:132

    CAS  PubMed  PubMed Central  Google Scholar 

  117. De Anda R et al (2006) Replacement of the glucose phosphotransferase transport system by galactose permease reduces acetate accumulation and improves process performance of Escherichia coli for recombinant protein production without impairment of growth rate. Metab Eng 8:281–290

    PubMed  Google Scholar 

  118. Lara AR et al (2008) Utility of an Escherichia coli strain engineered in the substrate uptake system for improved culture performance at high glucose and cell concentrations: an fed-batch cultures. Biotechnol Bioeng 99:893–901

    CAS  PubMed  Google Scholar 

  119. Flores S et al (2002) Analysis of carbon metabolism in Escherichia coli strains with an inactive phosphotransferase system by C-13 labeling and NMR spectroscopy. Metab Eng 4:124–137

    CAS  PubMed  Google Scholar 

  120. Knabben I et al (2010) High cell-density processes in batch mode of a genetically engineered Escherichia coli strain with minimized overflow metabolism using a pressurized bioreactor. J Biotechnol 150:73–79

    CAS  PubMed  Google Scholar 

  121. Soto R et al (2011) High cell-density cultivation in batch mode for plasmid DNA production by a metabolically engineered E-coli strain with minimized overflow metabolism. Biochem Eng J 56:165–171

    CAS  Google Scholar 

  122. Pablos T et al (2012) Enhanced production of plasmid DNA by engineered Escherichia coli strains. J Biotechnol 158:211–214

    CAS  PubMed  Google Scholar 

  123. Bohle K, Ross A (2011) Plasmid DNA Production for pharmaceutical use: role of specific growth rate and impact on process design. Biotechnol Bioeng 108:2099–2106

    CAS  PubMed  Google Scholar 

  124. Hecker M et al (1983) Replication of pBR322 DNA in stringent and relaxed strains of Escherichia coli. Mol Gen Genet 190:355–357

    CAS  PubMed  Google Scholar 

  125. Hofmann K et al (1990) Amplification of pBR322 plasmid DNA in Escherichia coli relA strains during batch and fed-batch fermentation. J Basic Microbiol 30:37–41

    CAS  PubMed  Google Scholar 

  126. Wang Z et al (2002) A model for regulation of colE1-like plasmid replication by uncharged tRNAs in amino acid-starved Escherichia coli cells. Plasmid 47:69–78

    CAS  PubMed  Google Scholar 

  127. Wegrzyn G (1999) Replication of plasmids during bacterial response to amino acid starvation. Plasmid 41:1–16

    CAS  PubMed  Google Scholar 

  128. Wang Z et al (2007) Adenosine monophosphate-induced amplification of ColE1 plasmid DNA in Escherichia coli. Plasmid 57:265–274

    CAS  PubMed  Google Scholar 

  129. Silva F et al (2011) Impact of plasmid induction strategy on overall plasmid DNA yield and E. coli physiology using flow cytometry and real-time PCR. Process Biochem 46:174–181

    CAS  Google Scholar 

  130. Carnes A et al (2006) Inducible Escherichia coli fermentation for increased plasmid DNA production. Biotechnol Appl Biochem 45:155–166

    CAS  PubMed  Google Scholar 

  131. Bower D et al (2012) Fed-batch microbioreactor platform for scale down and analysis of a plasmid DNA production process. Biotechnol Bioeng 109(8):1976–1986

    CAS  PubMed  Google Scholar 

  132. Bower DM, Prather KLJ (2012) Development of new plasmid DNA vaccine vectors with R1-based replicons. Microb Cell Fact 11:107

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Valdez-Cruz N et al (2010) Production of recombinant proteins in E. coli by the heat inducible expression system based on the phage lambda pL and/or pR promoters. Microb Cell Fact 9:18

    PubMed  PubMed Central  Google Scholar 

  134. Hoffmann F et al (2002) Metabolic adaptation of Escherichia coli during temperature-induced recombinant protein production: 1. Readjustment of metabolic enzyme synthesis. Biotechnol Bioeng 80:313–319

    CAS  PubMed  Google Scholar 

  135. Weber J et al (2002) Metabolic adaptation of Escherichia coli during temperature-induced recombinant protein production: 2. Redirection of metabolic fluxes. Biotechnol Bioeng 80:320–330

    CAS  PubMed  Google Scholar 

  136. Wittmann C et al (2007) Response of fluxome and metabolome to temperature-induced recombinant protein synthesis in Escherichia coli. J Biotechnol 132:375–384

    CAS  PubMed  Google Scholar 

  137. Caspeta L et al (2009) The effect of heating rate on Escherichia coli metabolism, physiological stress, transcriptional response, and production of temperature-induced recombinant protein: a scale-down study. Biotechnol Bioeng 102:468–482

    CAS  PubMed  Google Scholar 

  138. Jaén KE et al (2013) Effect of heating rate on pDNA production by E. coli. Biochem Eng J 79:230–238

    Google Scholar 

  139. Bentley W et al (1990) Plasmid-encoded protein – the principal factor in the metabolic burden associated with recombinant bacteria. Biotechnol Bioeng 35:668–681

    CAS  PubMed  Google Scholar 

  140. Chen W et al (1997) Automated fed-batch fermentation with feed-back controls based on dissolved oxygen (DO) and pH for production of DNA vaccines. J Ind Microbiol Biotechnol 18:43–48

    PubMed  Google Scholar 

  141. Kim J, Ryu D (1991) The effects of plasmid content, transcription efficiency, and translation efficiency on the productivity of a cloned gene protein in Escherichia coli. Biotechnol Bioeng 38:1271–1279

    CAS  PubMed  Google Scholar 

  142. Rozkov A et al (2006) Fed batch culture with declining specific growth rate for high-yielding production of a plasmid containing a gene therapy sequence in Escherichia coli DH1. Enzyme Microb Technol 39:47–50

    CAS  Google Scholar 

  143. Ryan W, Parulekar S (1991) Recombinant protein synthesis and plasmid instability in continuous cultures of Escherichia coli JM103 harboring a high copy number plasmid. Biotechnol Bioeng 37:415–429

    CAS  PubMed  Google Scholar 

  144. Wunderlich M (2010) Kinetic characterization of engineered Escherichia coli strains during plasmid DNA vaccine production in chemostats. In: Department of Food and Bioprocess Engineering, Technical University of Dresden, Germany

    Google Scholar 

  145. Levy M et al (1999) Effect of shear on plasmid DNA in solution. Bioprocess Eng 20:7–13

    CAS  Google Scholar 

  146. Levy M et al (2000) Removal of contaminant nucleic acids by nitrocellulose filtration during pharmaceutical-grade plasmid DNA processing. J Biotechnol 76:197–205

    CAS  PubMed  Google Scholar 

  147. Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Birnboim HC (1983) A rapid alkaline extraction method for the rapid isolation of plasmid DNA. Methods Enzymol 100:243–255

    CAS  PubMed  Google Scholar 

  149. Grimm S, Voss-Neudecker F (2003) High-purity plasmid isolation using silica oxide. In: Casali N (ed) Methods in Molecular Biol. Humana Press 235:83–87

    Google Scholar 

  150. Neudecker F, Grimm S (2000) High-throughput method for isolating plasmid DNA with reduced lipopolysaccharide content. Biotechniques 28:107–109

    CAS  PubMed  Google Scholar 

  151. Bankier T (1993) M13 phage growth and DNA purification using 96-well microtiter plates. Methods Mol Biol 23:41–45

    CAS  PubMed  Google Scholar 

  152. Gibson T, Sulston J (1987) Preparation of large numbers of plasmid DNA samples in microtiter plates by the alkaline lysis method. Gene Anal Tech 4:41–44

    CAS  PubMed  Google Scholar 

  153. Itoh M et al (1997) Simple and rapid preparation of plasmid template by a filtration method using microtiter filter plates. Nucleic Acids Res 25:1315–1316

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Itoh M et al (1999) Automated filtration-based high-throughput plasmid preparation system. Genome Res 9:463–470

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Konecki D, Phillips J (1998) TurboPrep II: an inexpensive, high-throughput plasmid template preparation protocol. Biotechniques 24:286–288

    CAS  PubMed  Google Scholar 

  156. Marra M et al (1999) High-throughput plasmid DNA purification for 3 cents per sample. Nucleic Acids Res 27(24):e37

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Urthaler J et al (2012) Industrial Manufacturing of plasmid-DNA products for gene vaccination and therapy. In: Thalhamer J (ed) Gene vaccines. Springer, Vienna, pp 311–330

    Google Scholar 

  158. Clemson M, Kelly W (2003) Optimizing alkaline lysis for DNA plasmid recovery. Biotechnol Appl Biochem 37:235–244

    CAS  PubMed  Google Scholar 

  159. Chamsart S et al (2001) The impact of fluid-dynamic-generated stresses on chDNA and pDNA stability during alkaline cell lysis for gene therapy products. Biotechnol Bioeng 75:387–392

    CAS  PubMed  Google Scholar 

  160. Varley D et al (1998) Production of plasmid DNA for human gene therapy using modified alkaline cell lysis and expanded bed anion exchange chromatography. Bioseparation 8:209–217

    Google Scholar 

  161. Holmes D, Quigley M (1981) A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 114:193–197

    CAS  PubMed  Google Scholar 

  162. O'Mahony K et al (2005) Proposal for a better integration of bacterial lysis into the production of plasmid DNA at large scale. J Biotechnol 119:118–132

    PubMed  Google Scholar 

  163. Carnes A et al (2009) Plasmid DNA production combining antibiotic-free selection, inducible high yield fermentation, and novel autolytic purification. Biotechnol Bioeng 104:505–515

    CAS  PubMed  Google Scholar 

  164. Cooke G et al (2001) Purification of essentially RNA free plasmid DNA using a modified Escherichia coli host strain expressing ribonuclease A. J Biotechnol 85:297–304

    CAS  PubMed  Google Scholar 

  165. Cranenburgh R et al (2001) Escherichia coli strains that allow antibiotic-free plasmid selection and maintenance by repressor titration. Nucleic Acids Res 29:E26

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Goh S, Good L (2008) Plasmid selection in Escherichia coli using an endogenous essential gene marker. BMC Biotechnol 8:61

    PubMed  PubMed Central  Google Scholar 

  167. Soubrier F et al (1999) pCOR: a new design of plasmid vectors for nonviral gene therapy. Gene Ther 6:1482–1488

    CAS  PubMed  Google Scholar 

  168. Hägg P et al (2004) A host/plasmid system that is not dependent on antibiotics and antibiotic resistance genes for stable plasmid maintenance in Escherichia coli. J Biotechnol 111:17–30

    PubMed  Google Scholar 

  169. Szpirer C, Milinkovitch M (2005) Separate-component-stabilization system for protein and DNA production without the use of antibiotics. Biotechniques 38:775–781

    CAS  PubMed  Google Scholar 

  170. Marie C et al (2010) pFARs, plasmids free of antibiotic resistance markers, display high-level transgene expression in muscle, skin and tumour cells. J Gene Med 12:323–332

    CAS  PubMed  Google Scholar 

  171. Luke J et al (2009) Improved antibiotic-free DNA vaccine vectors utilizing a novel RNA based plasmid selection system. Vaccine 27:6454–6459

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Panayotatos N (1988) Recombinant protein production with minimal-antibiotic-resistance vectors. Gene 74:357–363

    CAS  PubMed  Google Scholar 

  173. Mairhofer J et al (2010) Marker-free plasmids for gene therapeutic applications-lack of antibiotic resistance gene substantially improves the manufacturing process. J Biotechnol 143(30):130–137

    Google Scholar 

  174. Vandermeulen G, Marie C, Scherman D, Preat V (2011) New generation of plasmid backbones devoid of antibiotic resistance marker for gene therapy trials. Mol Ther 19:1942–1949

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Mairhofer J et al (2008) A novel antibiotic free plasmid selection system: advances in safe and efficient DNA therapy. Biotechnol J 3:83–89

    CAS  PubMed  Google Scholar 

  176. Fryxell KJ, Moon WJ (2005) CpG mutation rates in the human genome are highly dependent on local GC content. Mol Biol Evol 22:650–658

    CAS  PubMed  Google Scholar 

  177. Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9:465–476

    CAS  PubMed  Google Scholar 

  178. Yamamoto S et al (1992) Unique palindromic sequences in synthetic oligonucleotides are required to induce IFN [correction of INF] and augment IFN-mediated [correction of INF] natural killer activity. J Immunol 148:4072–4076

    CAS  PubMed  Google Scholar 

  179. Krieg AM et al (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374:546–549

    CAS  PubMed  Google Scholar 

  180. Hemmi H et al (2000) A toll-like receptor recognizes bacterial DNA. Nature 408:740–745

    CAS  PubMed  Google Scholar 

  181. Yew N et al (2000) Reduced inflammatory response to plasmid DNA vectors by elimination and inhibition of immunostimulatory CpG motifs. Mol Ther 1:255–262

    CAS  PubMed  Google Scholar 

  182. Yew N et al (2002) CpG-depleted plasmid DNA vectors with enhanced safety and long-term gene expression in vivo. Mol Ther 5:731–738

    CAS  PubMed  Google Scholar 

  183. Hyde SC et al (2008) CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Nat Biotechnol 26:549–551

    CAS  PubMed  Google Scholar 

  184. Navarro G et al (2010) Low generation PAMAM dendrimer and CpG free plasmids allow targeted and extended transgene expression in tumors after systemic delivery. J Control Release 146:99–105

    CAS  PubMed  Google Scholar 

  185. Coban C et al (2005) Effect of plasmid backbone modification by different human CpG motifs on the immunogenicity of DNA vaccine vectors. J Leukoc Biol 78:647–655

    CAS  PubMed  Google Scholar 

  186. Higgins D et al (2007) Immunostimulatory DNA as a vaccine adjuvant. Expert Rev Vaccines 6:747–759

    CAS  PubMed  Google Scholar 

  187. Kosovac D et al (2010) Minimal doses of a sequence-optimized transgene mediate high-level and long-term EPO expression in vivo: challenging CpG-free gene design. Gene Ther 18(2):189–198

    PubMed  Google Scholar 

  188. Bauer AP et al (2010) The impact of intragenic CpG content on gene expression. Nucleic Acids Res 38:3891–3908

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Lesina E et al (2010) CpG-free plasmid DNA prevents deterioration of pulmonary function in mice. Eur J Pharm Biopharm 74:427–434

    CAS  PubMed  Google Scholar 

  190. Šmahel M et al (2011) Systemic administration of CpG oligodeoxynucleotide and levamisole as adjuvants for gene-gun-delivered antitumor DNA vaccines. Clin Dev Immunol 2011:176759

    PubMed  PubMed Central  Google Scholar 

  191. Shirota Y et al (2012) Intratumoral injection of cpg oligonucleotides induces the differentiation and reduces the immunosuppressive activity of myeloid-derived suppressor cells. J Immunol 188(4):1592–1599

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Bolhassani A et al (2011) Improvement of different vaccine delivery systems for cancer therapy. Mol Cancer 10:3

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Chen Z et al (2004) Silencing of episomal transgene expression by plasmid bacterial DNA elements in vivo. Gene Ther 11:856–864

    CAS  PubMed  Google Scholar 

  194. Yew N et al (1999) Contribution of plasmid DNA to inflammation in the lung after administration of cationic lipid:pDNA complexes. Hum Gene Ther 10:223–234

    CAS  PubMed  Google Scholar 

  195. Hodges BL et al (2004) Long-term transgene expression from plasmid DNA gene therapy vectors is negatively affected by CpG dinucleotides. Mol Ther 10:269–278

    CAS  PubMed  Google Scholar 

  196. Chen ZY et al (2008) Silencing of episomal transgene expression in liver by plasmid bacterial backbone DNA is independent of CpG methylation. Mol Ther 16:548–556

    CAS  PubMed  Google Scholar 

  197. Chabot S et al (2012) Minicircle DNA electrotransfer for efficient tissue-targeted gene delivery. Gene Ther 20(1):62–68

    PubMed  Google Scholar 

  198. Kreiss P et al (1999) Plasmid DNA size does not affect the physicochemical properties of lipoplexes but modulates gene transfer efficiency. Nucleic Acids Res 27:3792–3798

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Lukacs G et al (2000) Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 275:1625–1629

    CAS  PubMed  Google Scholar 

  200. Pollard H et al (1998) Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J Biol Chem 273:7507–7511

    CAS  PubMed  Google Scholar 

  201. Yin W et al (2005) Investigations of the effect of DNA size in transient transfection assay using dual luciferase system. Anal Biochem 346:289–294

    CAS  PubMed  Google Scholar 

  202. Walker W et al (2004) The effects of plasmid copy number and sequence context upon transfection efficiency. J Control Release 94:245–252

    CAS  PubMed  Google Scholar 

  203. Carpentier E et al (2007) Limiting factors governing protein expression following polyethylenimine-mediated gene transfer in HEK293-EBNA1 cells. J Biotechnol 128:268–280

    CAS  PubMed  Google Scholar 

  204. Klug B et al (2012) Current status of regulations for DNA vaccines. In: Thalhamer J (ed) Gene vaccines. Springer Verlag, Vienna, pp 285–295

    Google Scholar 

  205. Klinman DM et al (2010) FDA guidance on prophylactic DNA vaccines: analysis and recommendations. Vaccine 28:2801–2805

    PubMed  PubMed Central  Google Scholar 

  206. CPMP/SWP/465/95 (1997) Note for guidance on preclinical pharmacological and toxicological testing of vaccines

    Google Scholar 

  207. EMEA/CHMP/VWP/164653/2005 (2006) Guideline on clinical evaluation of new vaccines. The European Medicine Agency

    Google Scholar 

  208. Documents FVG (2007) Guidance for industry: considerations for plasmid DNA vaccines for infectious disease indications

    Google Scholar 

  209. 941/20, W. T. R. S. N. (2005) Guidelines for assuring the quality and nonclinical safety evaluation of DNA vaccines

    Google Scholar 

  210. CPMP/BWP/3088/99 (2001) Note for guidance on the quality, preclinical and clinical aspects of gene transfer medicinal products. The European Medicines Agency

    Google Scholar 

  211. Yang YP et al (2009) Good manufacturing practices production and analysis of a DNA vaccine against dental caries. Acta Pharmacol Sin 30:1513–1521

    CAS  PubMed  Google Scholar 

  212. Quaak SG et al (2008) GMP production of pDERMATT for vaccination against melanoma in a phase I clinical trial. Eur J Pharm Biopharm 70:429–438

    CAS  PubMed  Google Scholar 

  213. Vidal L et al (2008) Development of an antibiotic-free plasmid selection system based on glycine auxotrophy for recombinant protein overproduction in Escherichia coli. J Biotechnol 134:127–136

    CAS  PubMed  Google Scholar 

  214. Dong WR et al (2010) Novel antibiotic-free plasmid selection system based on complementation of host auxotrophy in the NAD de novo synthesis pathway. Appl Environ Microbiol 76:2295–2303

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by CONACyT grant 183911 and PROMEP grant 10828.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mairhofer, J., Lara, A.R. (2014). Advances in Host and Vector Development for the Production of Plasmid DNA Vaccines. In: Lawman, M., Lawman, P. (eds) Cancer Vaccines. Methods in Molecular Biology, vol 1139. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0345-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0345-0_38

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0344-3

  • Online ISBN: 978-1-4939-0345-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics