Skip to main content

Preparation of Cancer-Related Peptide Cocktails that Target Heterogeneously Expressed Antigens

  • Protocol
  • First Online:
Book cover Cancer Vaccines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1139))

  • 4106 Accesses

Abstract

A number of outstanding descriptions of the techniques linked to peptide chain assembly have already been published (Atherton and Sheppard, Solid phase peptide synthesis: a practical approach, pp 55–150, 1989; Stewart and Young, Solid phase peptide synthesis, pp 91–120, 1984; Wellings and Atherton, Methods in enzymology, p 44, 1997). These processes are also described in the operator manuals supplied by the manufacturers of peptide synthesis instrumentation. Accordingly the protocols presented in this chapter are to provide further information on those topics not covered in those publications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atherton E, Sheppard RC (1989) Solid phase peptide synthesis: a practical approach. IRL Press, Oxford, pp 55–150

    Google Scholar 

  2. Stewart JM, Young JD (1984) Solid phase peptide synthesis, 2nd edn. Pierce Chemical Company, Rockford, pp 91–120

    Google Scholar 

  3. Wellings DA, Atherton E (1997) Methods in enzymology, vol 289. Academic, New York, p 44

    Google Scholar 

  4. Lerner RA (1982) Tapping the immunological repertoire to produce antibodies of predetermined specificity. Nature 299:592–596

    Article  CAS  Google Scholar 

  5. Sutcliffe JG et al (1980) Chemical synthesis of a polypeptide predicted from nucleotide sequence allows detection of a new retroviral gene product. Nature 287:801–805

    Article  CAS  PubMed  Google Scholar 

  6. Green N et al (1982) Immunogenic structure of the influenza virus hemagglutinin. Cell 23:477–487

    Article  Google Scholar 

  7. Bittle JL et al (1982) Protection against foot-and-mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence. Nature 298:30–33

    Article  CAS  PubMed  Google Scholar 

  8. Houghten et al (1985) In: Lerner RA et al (eds) Vaccines ‘85: molecular and chemical basis of resistance to parasitic, bacterial, and viral diseases. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 91–94

    Google Scholar 

  9. East IJ et al (1980) On topographic antigenic determinants in myoglobins. Mol Immunol 17:519–525

    Article  CAS  PubMed  Google Scholar 

  10. Wilson IA et al (1984) The structure of an antigenic determinant in a protein. Cell 37:767–778

    Article  CAS  PubMed  Google Scholar 

  11. McMillan S et al (1983) Synthetic idiotypes: the third hypervariable region of murine anti-dextran antibodies. Cell 35:859–863

    Article  CAS  PubMed  Google Scholar 

  12. Geysen HM et al (1984) Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc Natl Acad Sci U S A 81:3998–4002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Geysen HM et al (1985) Small peptides induce antibodies with a sequence and structural requirement for binding antigen comparable to antibodies raised against the native protein. Proc Natl Acad Sci U S A 82:178–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Niman HL et al (1983) Generation of protein-reactive antibodies by short peptides is an event of high frequency: implications for the structural basis of immune recognition. Proc Natl Acad Sci U S A 80:4949–4953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Yamashiro D, Li CH (1984). In: Meienhofer H (ed) The peptides, vol 6. Academic, New York, pp 191–217

    Google Scholar 

  16. Hruby V (1984). In: Vida JA, Gordon M (eds) Conformationally directed drug design. American Chemical Society, Washington, DC, pp 9–27

    Google Scholar 

  17. Veber DF et al (1978) Conformationally restricted bicyclic analogs of somatostatin. Proc Natl Acad Sci U S A 75:2636–2640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Chen PP et al (1984) Anti-hypervariable region antibody induced by a defined peptide: an approach for studying the structural correlates of idiotypes. Proc Natl Acad Sci U S A 81:1784–1788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Klipstein FA et al (1984) Enzyme-linked immunosorbent assay for Escherichia coli heat-stable enterotoxin. J Clin Microbiol 19:798–803

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Chen PP et al (1985) Characterization of an epibody. An antiidiotype that reacts with both the idiotype of rheumatoid factors (RF) and the antigen recognized by RF. J Exp Med 161:323–331

    Article  CAS  PubMed  Google Scholar 

  21. Bloom FE et al (1985) Immunocytochemical mapping of 1B236, a brain-specific neuronal polypeptide deduced from the sequence of a cloned mRNA. J Neurosci 5:1781–1802

    CAS  PubMed  Google Scholar 

  22. Sutcliffe JG et al (1983) Identifying the protein products of brain-specific genes with antibodies to chemically synthesized peptides. Cell 33:671–682

    Article  CAS  PubMed  Google Scholar 

  23. Freidinger RM et al (1980) Bioactive conformation of luteinizing hormone-releasing hormone: evidence from a conformationally constrained analog. Science 210:656–658

    Article  CAS  PubMed  Google Scholar 

  24. Bae J et al (2012) Myeloma-specific multiple peptides able to generate cytotoxic T lymphocytes: a potential therapeutic application in multiple myeloma and other plasma cell disorders. Clin Cancer Res 18(17):4850–4860

    Article  CAS  PubMed  Google Scholar 

  25. Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154

    Article  CAS  Google Scholar 

  26. Atherton E et al (1978) A mild procedure for solid phase peptide synthesis: use of fluorenylmethoxycarbonylamino-acids. J Chem Soc Chem Commun 13:537–539

    Article  Google Scholar 

  27. Fields GB, Noble RL (1990) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 35:161–214

    Article  CAS  PubMed  Google Scholar 

  28. Grant G (ed) (1992) Synthetic peptides. W. H. Freeman & Co., New York, pp 77–183

    Google Scholar 

  29. Barlos K et al (1989) Darstellung geschutzter peptid-fragmente unter einsatz substituierter triphenylmethyl-harze. Tetrahedron Lett 30:3943–3946

    Article  CAS  Google Scholar 

  30. Bayer E et al (1994). In: Hodges RS, Smith JA (ed) Peptides: chemistry, structure and biology, Proc 13th American Peptide Symposium. ESCOM, Lieden, p 156

    Google Scholar 

  31. Carpino LA, El-Faham A (1995) Tetramethylfluoroformamidinium hexafluorophosphate: a rapid acting peptide coupling reagent for solution and solid phase peptide synthesis. J Am Chem Soc 117:5401–5402

    Article  CAS  Google Scholar 

  32. Coste J et al (1990) PyBOP a new peptide coupling reagent devoid of toxic by product. Tetrahedron Lett 31:205–208

    Article  CAS  Google Scholar 

  33. Knorr R et al (1989) New coupling reagents in peptide chemistry. Tetrahedron Lett 30:1927–1930

    Article  CAS  Google Scholar 

  34. Carpino LA (1993) 1-hydroxy-7-azabenzotriazole. An efficient peptide coupling additive. J Am Chem Soc 115:4397–4398

    Article  CAS  Google Scholar 

  35. Kaiser E et al (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem 34:595–598

    Article  CAS  PubMed  Google Scholar 

  36. Arad O, Houghten RA (1990) An evaluation of the advantages and effectiveness of picric acid monitoring during solid phase peptide synthesis. Pept Res 3:42–50

    CAS  PubMed  Google Scholar 

  37. Hancock WS, Battersby JE (1976) A new micro-test for the detection of incomplete coupling reactions in solid-phase peptide synthesis using 2,4,6-trinitrobenzenesulphonic acid. Anal Biochem 71:260–264

    Article  CAS  PubMed  Google Scholar 

  38. Vojkovsky T (1995) Detection of secondary amines on solid phase. Pept Res 8:236–237

    CAS  PubMed  Google Scholar 

  39. Meldal M et al (1998) Inhibition of cruzipain visualized in a fluorescence quenched solid-phase inhibitor library assay. D-amino acid inhibitors for cruzipain, cathepsin B and cathepsin L. J Pept Sci 4:83–91

    Article  CAS  PubMed  Google Scholar 

  40. Barlos K et al (1991) 2-Chlorotrityl chloride resin. Studies on anchoring of Fmoc-amino acids and peptide cleavage. Int J Pept Protein Res 37:513–520

    CAS  PubMed  Google Scholar 

  41. Steinauer R, White P (1994). In: Epton R (ed) Innovations and perspectives in solid phase synthesis. 3rd international symposium, Mayflower Worldwide Ltd., Birmingham, UK, p 689

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gupta, R., Sachdeva, P.P. (2014). Preparation of Cancer-Related Peptide Cocktails that Target Heterogeneously Expressed Antigens. In: Lawman, M., Lawman, P. (eds) Cancer Vaccines. Methods in Molecular Biology, vol 1139. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0345-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0345-0_31

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0344-3

  • Online ISBN: 978-1-4939-0345-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics