Skip to main content

Production of Multiple CTL Epitopes from Multiple Tumor-Associated Antigens

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1139))

Abstract

Identification of antigenic peptides derived from tumor-associated antigens (TAA) enables cancer vaccine therapy using antigenic peptides. Here, we summarize the design of antigenic peptides and induction of cytotoxic T lymphocytes (CTL) using antigenic peptides and validation of CTL.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rosenberg SA et al (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Perez SA et al (2010) A new era in anticancer peptide vaccines. Cancer 116:2071–2080

    CAS  PubMed  Google Scholar 

  3. Hirohashi Y et al (2009) The functioning antigens: beyond just as the immunological targets. Cancer Sci 100:798–806

    Article  CAS  PubMed  Google Scholar 

  4. van der Bruggen P et al (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254:1643–1647

    Article  PubMed  Google Scholar 

  5. Sahin U et al (1995) Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci USA 92:11810–11813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Rosenberg SA (1999) A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity 10:281–287

    Article  CAS  PubMed  Google Scholar 

  7. Polyak K, Riggins GJ (2001) Gene discovery using the serial analysis of gene expression technique: implications for cancer research. J Clin Oncol 19:2948–2958

    CAS  PubMed  Google Scholar 

  8. Parker KC et al (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152:163–175

    CAS  PubMed  Google Scholar 

  9. Lin HH et al (2008) Evaluation of MHC class I peptide binding prediction servers: applications for vaccine research. BMC Immunol 9:8

    Article  PubMed Central  PubMed  Google Scholar 

  10. Hirohashi Y et al (2002) An HLA-A24-restricted cytotoxic T lymphocyte epitope of a tumor-associated protein, survivin. Clin Cancer Res 8:1731–1739

    CAS  PubMed  Google Scholar 

  11. Hariu H et al (2005) Aberrant expression and potency as a cancer immunotherapy target of inhibitor of apoptosis protein family: livin/ML-IAP in lung cancer. Clin Cancer Res 11:1000–1009

    CAS  PubMed  Google Scholar 

  12. Inoda S et al (2009) Cep55/c10orf3, a tumor antigen derived from a centrosome residing protein in breast carcinoma. J Immunother 32:474–485

    Article  CAS  PubMed  Google Scholar 

  13. Maeda A et al (2001) Identification of human antitumor cytotoxic T lymphocytes epitopes of recoverin, a cancer-associated retinopathy antigen, possibly related with a better prognosis in a paraneoplastic syndrome. Eur J Immunol 31:563–572

    Article  CAS  PubMed  Google Scholar 

  14. Morrison J et al (1992) Identification of the nonamer peptide from influenza A matrix protein and the role of pockets of HLA-A2 in its recognition by cytotoxic T lymphocytes. Eur J Immunol 22:903–907

    Article  CAS  PubMed  Google Scholar 

  15. Koup RA et al (1991) Limiting dilution analysis of cytotoxic T lymphocytes to human immunodeficiency virus gag antigens in infected persons: in vitro quantitation of effector cell populations with p17 and p24 specificities. J Exp Med 174:1593–1600

    Article  CAS  PubMed  Google Scholar 

  16. Lee SP et al (1997) Conserved CTL epitopes within EBV latent membrane protein 2: a potential target for CTL-based tumor therapy. J Immunol 158:3325–3334

    CAS  PubMed  Google Scholar 

  17. Andersen MH et al (1999) An assay for peptide binding to HLA-Cw*0102. Tissue Antigens 54:185–190

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to N.S.) program for developing the supporting system for upgrading education and research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to N.S.) and Takeda Science Foundation (to Y.H.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Morita, R., Hirohashi, Y., Nakatsugawa, M., Kanaseki, T., Torigoe, T., Sato, N. (2014). Production of Multiple CTL Epitopes from Multiple Tumor-Associated Antigens. In: Lawman, M., Lawman, P. (eds) Cancer Vaccines. Methods in Molecular Biology, vol 1139. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0345-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0345-0_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0344-3

  • Online ISBN: 978-1-4939-0345-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics