Skip to main content
Book cover

Mitosis pp 57–78Cite as

Image-Based Computational Tracking and Analysis of Spindle Protein Dynamics

  • Protocol
  • First Online:
  • 2141 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1136))

Abstract

The spindle is a highly complex and dynamic molecular machine that is assembled during cell division for accurate segregation of replicated chromosomes. Successful completion of cell division relies on the right spindle proteins to be at the right place at the right time to serve their functions. Quantitative characterization and analysis of spatiotemporal behaviors of spindle proteins are therefore essential to understanding related cell division mechanisms. The main goal of this chapter is to introduce basic concepts and methods for computational tracking and analysis of spindle protein spatiotemporal dynamics that is visualized and recorded in fluorescence microscopy images. An emphasis is placed on providing practical and useful information on related software tools. Examples are used to demonstrate applications of related computational methods and software tools.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wittmann T, Hyman A, Desai A (2001) The spindle: a dynamic assembly of microtubules and motors. Nat Cell Biol 3(1):E28–E34

    Article  CAS  PubMed  Google Scholar 

  2. Walczak CE, Heald R (2008) Mechanisms of mitotic spindle assembly and function. Int Rev Cytol 265:111–158

    Article  CAS  PubMed  Google Scholar 

  3. Rieder CL, Khodjakov A (2003) Mitosis through the microscope: advances in seeing inside live dividing cells. Science 300(5616): 91–96

    Article  CAS  PubMed  Google Scholar 

  4. Ferenz NP et al (2010) Imaging protein dynamics in live mitotic cells. Methods 51(2):193–196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Maddox PS et al (2012) Imaging the mitotic spindle. In: Michael Conn P (ed) Methods in enzymology. Academic, San Diego, pp 81–103

    Google Scholar 

  6. Toya M et al (2012) Imaging of mitotic spindle dynamics in Caenorhabditis elegans embryos. In: Cassimeris L, Tran P (eds) Methods in cell biology. Academic, San Diego, pp 359–372

    Google Scholar 

  7. Danuser G (2011) Computer vision in cell biology. Cell 147(5):973–978

    Article  CAS  PubMed  Google Scholar 

  8. Dorn JF, Danuser G, Yang G (2008) Computational processing and analysis of dynamic fluorescence image data. In: Sullivan KF (ed) Methods in cell biology. Academic, San Diego, pp 497–538

    Google Scholar 

  9. Mogilner A et al (2006) Modeling mitosis. Trends Cell Biol 16(2):88–96

    Article  CAS  PubMed  Google Scholar 

  10. Mogilner A, Craig E (2010) Towards a quantitative understanding of mitotic spindle assembly and mechanics. J Cell Sci 123(20): 3435–3445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Sonka M, Hlavac V, Boyle R (2007) Image processing, analysis, and machine vision, 3rd edn. Thomson Engineering, Toronto

    Google Scholar 

  12. Szeliski R (2010) Computer vision: algorithms and applications. Springer, New York

    Google Scholar 

  13. Zitova B, Flusser J (2003) Image registration methods: a survey. Image Vision Comput 21(11):977–1000

    Article  Google Scholar 

  14. Maintz JBA, Viergever MA (1998) A survey of medical image registration. Med Image Anal 2(1):1–36

    Article  CAS  PubMed  Google Scholar 

  15. Nixon M, Aguado A (2008) Feature extraction & image processing, 2nd edn. Academic, Oxford

    Google Scholar 

  16. Meijering E et al (2009) Tracking in cell and developmental biology. Semin Cell Dev Biol 20(8):894–902

    Article  PubMed  Google Scholar 

  17. Meijering E, Dzyubachyk O, Smal I (2012) Methods for cell and particle tracking. Methods Enzymol 504:183–200

    Article  PubMed  Google Scholar 

  18. Saxton MJ (2008) Single-particle tracking: connecting the dots. Nat Methods 5(8):671–672

    Article  CAS  PubMed  Google Scholar 

  19. Saxton MJ, Jacobson K (1997) Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26(1): 373–399

    Article  CAS  PubMed  Google Scholar 

  20. Witten IH, Frank E, Hall MA (2011) Data mining: practical machine learning tools and techniques, 3rd edn. Morgan Kaufmann, Burlington, MA

    Google Scholar 

  21. Yang G (2013) Bioimage informatics for understanding spatiotemporal dynamics of cellular processes. Wiley Interdiscip Rev Syst Biol Med 5(3):367–380

    Article  PubMed  Google Scholar 

  22. Lichtman JW, Conchello JA (2005) Fluorescence microscopy. Nat Methods 2:910–919

    Article  CAS  PubMed  Google Scholar 

  23. Danuser G, Waterman-Storer CM (2006) Quantitative fluorescent speckle microscopy of cytoskeleton dynamics. Annu Rev Biophys Biomol Struct 35(1):361–387

    Article  CAS  PubMed  Google Scholar 

  24. Cameron LA et al (2006) Kinesin-5 independent poleward flux of kinetochore microtubules in PtK1 cells. J Cell Biol 173(2): 173–179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Yang G et al (2007) Architectural dynamics of the meiotic spindle revealed by single-fluorophore imaging. Nat Cell Biol 9(11): 1233–1242

    Article  CAS  PubMed  Google Scholar 

  26. Lippincott-Schwartz J, Snapp E, Kenworthy A (2001) Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2(6):444–456

    Article  CAS  PubMed  Google Scholar 

  27. Eliceiri KW et al (2012) Biological imaging software tools. Nat Methods 9(7):697–710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  Google Scholar 

  29. de Chaumont F et al (2012) Icy: an open bioimage informatics platform for extended reproducible research. Nat Methods 9(7): 690–696

    Article  PubMed  Google Scholar 

  30. Schindelin J et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  CAS  PubMed  Google Scholar 

  31. Yang G et al (2008) Regional variation of microtubule flux reveals microtubule organization in the metaphase meiotic spindle. J Cell Biol 182(4):631–639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Houghtaling BR et al (2009) Op18 reveals the contribution of nonkinetochore microtubules to the dynamic organization of the vertebrate meiotic spindle. Proc Natl Acad Sci U S A 106(36):15338–15343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Weinger JS et al (2011) A nonmotor microtubule binding site in kinesin-5 is required for filament crosslinking and sliding. Curr Biol 21(2):154–160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Gable A et al (2012) Dynamic reorganization of Eg5 in the mammalian spindle throughout mitosis requires dynein and TPX2. Mol Biol Cell 23:1254–1266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Goodman B et al (2010) Lamin B counteracts the kinesin Eg5 to restrain spindle pole separation during spindle assembly. J Biol Chem 285(45):35238–35244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Baker S, Matthews I (2004) Lucas-Kanade 20 years on: a unifying framework. Int J Comput Vision 56(3):221–255

    Article  Google Scholar 

  37. Qiu M, Yang G (2013) Drift correction for fluorescence live cell imaging through correlated motion identification. In: Proceedings of 2013 IEEE international symposium on biomedical imaging (ISBI). San Francisco, CA, pp 452–455

    Google Scholar 

  38. Ponti A et al (2003) Computational analysis of F-Actin turnover in cortical actin meshworks using fluorescent speckle microscopy. Biophys J 84(5):3336–3352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Cheezum MK, Walker WF, Guilford WH (2001) Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J 81(4):2378–2388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Yildiz A, Selvin PR (2005) Fluorescence imaging with one nanometer accuracy: application to molecular motors. Acc Chem Res 38(7):574–582

    Article  CAS  PubMed  Google Scholar 

  41. Qiu M, Lee H-C, Yang G (2012) Nanometer resolution tracking and modeling of bidirectional axonal cargo transport. In: Proceedings of 2012 IEEE international symposium on biomedical imaging (ISBI). Barcelona, Spain, pp 992–995

    Google Scholar 

  42. Huang B, Bates M, Zhuang X (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78(1):993–1016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Smith CS et al (2010) Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods 7(5): 373–375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Blackman S, Popoli R (1999) Design and analysis of modern tracking systems. Artech House, Norwood

    Google Scholar 

  45. Veenman CJ, Reinders MJT, Backer E (2001) Resolving motion correspondence for densely moving points. IEEE Trans Patt Anal Mach Intel 23(1):54–72

    Article  Google Scholar 

  46. Cox I (1993) A review of statistical data association techniques for motion correspondence. Int J Comput Vision 10(1):53–66

    Article  Google Scholar 

  47. Mukherjee A et al (2011) Automated kymograph analysis for profiling axonal transport of secretory granules. Med Image Anal 15(3): 354–367

    Article  PubMed  Google Scholar 

  48. Padfield D, Rittscher J, Roysam B (2011) Coupled minimum-cost flow cell tracking for high-throughput quantitative analysis. Med Image Anal 15(4):650–668

    Article  PubMed  Google Scholar 

  49. Applegate KT et al (2011) plusTipTracker: quantitative image analysis software for the measurement of microtubule dynamics. J Struct Biol 176(2):168–184

    Article  PubMed Central  PubMed  Google Scholar 

  50. Matov A et al (2010) Analysis of microtubule dynamic instability using a plus-end growth marker. Nat Methods 7(9):761–768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Jaqaman K (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods 5:695–702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Li K et al (2008) Cell population tracking and lineage construction with spatiotemporal context. Med Image Anal 12(5):546–566

    Article  PubMed Central  PubMed  Google Scholar 

  53. Ji L, Danuser G (2005) Tracking quasi-stationary flow of weak fluorescent signals by adaptive multi-frame correlation. J Microsc 220(3):150–167

    Article  CAS  PubMed  Google Scholar 

  54. Ye M, Haralick RM, Shapiro LG (2003) Estimating piecewise-smooth optical flow with global matching and graduated optimization. IEEE Trans Patt Anal Mach Intel 25(12): 1625–1630

    Article  Google Scholar 

  55. Wilson CA et al (2010) Myosin II contributes to cell-scale actin network treadmilling through network disassembly. Nature 465(7296):373–377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Qian H, Sheetz MP, Elson EL (1991) Single particle tracking: analysis of diffusion and flow in two-dimensional systems. Biophys J 60(4): 910–921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Saxton MJ (2007) Modeling 2D and 3D diffusion. Methods Mol Biol 400:295–321

    Article  CAS  PubMed  Google Scholar 

  58. Das R, Cairo CW, Coombs D (2009) A hidden Markov model for single particle tracks quantifies dynamic interactions between LFA-1 and the actin cytoskeleton. PLoS Comput Biol 5(11):e1000556

    Article  PubMed Central  PubMed  Google Scholar 

  59. Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286

    Article  Google Scholar 

  60. Reis GF et al (2012) Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila. Mol Biol Cell 23(9):1700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis and density estimation. J Am Stat Assoc 97:611–631

    Article  Google Scholar 

  62. Diggle PJ (2007) Spatio-temporal point processes: methods and applications. In: Finkenstad B, Held L, Isham V (eds) Statistical methods for spatio-temporal systems. Chapman & Hall, Boca Raton, FL, pp 1–45

    Google Scholar 

  63. Illian J et al (2008) Statistical analysis and modeling of spatial point patterns. Wiley-Interscience, Chichester

    Google Scholar 

  64. Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley-Interscience, Hoboken, NJ

    Google Scholar 

  65. Kapoor TM, Mitchison TJ (2001) Eg5 is static in bipolar spindles relative to tubulin. J Cell Biol 154(6):1125–1134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Uteng M et al (2008) Poleward transport of Eg5 by dynein/dynactin in Xenopus laevis egg extract spindles. J Cell Biol 182(4):715–726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Christensen HI, Philips PJ (eds) (2002) Empirical evaluation methods in computer vision. World Scientific Publishing, Singapore

    Google Scholar 

Download references

Acknowledgements

I am grateful to my colleagues for valuable discussions and inputs. I would like to thank Gaudenz Danuser, Ted Salmon, Tarun Kapoor, Yixian Zheng, and Patricia Wadsworth for sharing their insights into the biology of mitosis. I would also like to thank Yu-li Wang and Jelena Kovacevic for their support. This work is supported in part by NSF grants MCB-1052660 and DBI-1052925 and NSF Faculty Early Career Award DBI-1149494.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yang, G. (2014). Image-Based Computational Tracking and Analysis of Spindle Protein Dynamics. In: Sharp, D. (eds) Mitosis. Methods in Molecular Biology, vol 1136. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0329-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0329-0_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0328-3

  • Online ISBN: 978-1-4939-0329-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics