Skip to main content

Generation of Self-Peptides to Treat Systemic Lupus Erythematosus

  • Protocol
  • First Online:
Book cover Systemic Lupus Erythematosus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1134))

Abstract

Synthetic peptides are attracting increasing attention as therapeutics. Despite their potential, however, only a few selected peptides have been able to enter in clinical trials for chronic autoimmune diseases and systemic lupus erythematosus (SLE) in particular. Here, we describe and discuss a series of assays, which may help in characterizing valuable candidate peptides that were applied in our laboratory to develop the lupus P140 peptide program. The different steps of selection include the choice of the initial autoantigen, the design, synthesis and purification of peptides, their preliminary screen by measuring cytokines produced ex vivo by T cells and their binding to major histocompatibility complex class II (MHCII) molecules, their capacity to lower peripheral cell hyperproliferation in lupus-prone MRL/lpr mice, and, as a final step, their ability to slow down the development of lupus disease in model animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zompra AA, Galanis AS, Werbitzky O, Albericio F (2009) Manufacturing peptides as active pharmaceutical ingredients. Future Med Chem 1:361–377

    Article  CAS  PubMed  Google Scholar 

  2. Briand JP, Muller S (2005) Synthetic peptides for the analysis of B-cell epitopes in autoantigens. In: Pollard KM (ed) Autoantibodies and autoimmunity: molecular mechanisms in health and disease. Weinheim, Wiley-VCH, pp 189–224

    Google Scholar 

  3. Gentilucci L, De Marco R, Cerisoli L (2010) Chemical modifications designed to improve peptide stability: incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr Pharm Des 16:3185–3203

    Article  CAS  PubMed  Google Scholar 

  4. Partidos CD, Beignon AS, Semetey V, Briand JP, Muller S (2001) The bare skin and the nose as non-invasive routes for administering peptide vaccines. Vaccine 19:2708–2715

    Article  CAS  PubMed  Google Scholar 

  5. Briand JP, Muller S (2010) Emerging peptide therapeutics for inflammatory autoimmune diseases. Curr Pharm Des 16:1136–1142

    Article  CAS  PubMed  Google Scholar 

  6. Schall N, Page N, Macri C, Chaloin O, Briand JP, Muller S (2012) Peptide-based approaches to treat lupus and other autoimmune diseases. J Autoimmun 39:143–153

    Article  CAS  PubMed  Google Scholar 

  7. Steinman L, Merrill JT, Mcinnes IB, Peakman M (2012) Optimization of current and future therapy for autoimmune diseases. Nat Med 18:59–65

    Article  CAS  PubMed  Google Scholar 

  8. Zimmer R, Scherbarth HR, Rillo OL, Gomez-Reino JJ, Muller S (2013) Lupuzor/P140 peptide in patients with systemic lupus erythematosus: a randomised, double-blind, placebo-controlled phase IIb clinical trial. Ann Rheum Dis 72:1830–1835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Neimark J, Briand JP (1993) Development of a fully automated multichannel peptide synthesizer with integrated TFA cleavage capability. Pept Res 6:219–228

    CAS  PubMed  Google Scholar 

  10. Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154

    Article  CAS  Google Scholar 

  11. Carpino LA, Han GY (1970) The 9-fluorenylmethoxycarbonyl function, a new base-sensitive amino-protecting group. J Am Chem Soc 92:5748–5749

    Article  CAS  Google Scholar 

  12. Monneaux F, Muller S (2000) Laboratory protocols for the identification of Th cell epitopes on self-antigens in mice with systemic autoimmune diseases. J Immunol Methods 244:195–204

    Article  CAS  PubMed  Google Scholar 

  13. Baker PE, Gillis S, Smith KA (1979) Monoclonal cytolytic T-cell lines. J Exp Med 149:273–278

    Article  CAS  PubMed  Google Scholar 

  14. Hu-Li J, Ohara J, Watson C, Tsang W, Paul WE (1989) Derivation of a T cell line that is highly responsive to IL-4 and IL-2 (CT.4R) and of an IL-2 hyporesponsive mutant of that line (CT.4S). J Immunol 142:800–807

    CAS  PubMed  Google Scholar 

  15. Breen EC, Reynolds SM, Cox C, Jacobson LP, Magpantay L, Mulder CB et al (2011) Multisite comparison of high-sensitivity multiplex cytokine assays. Clin Vaccine Immunol 18:1229–1242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Lash GE, Scaife PJ, Innes BA, Otun HA, Robson SC, Searle RF et al (2006) Comparison of three multiplex cytokine analysis systems: Luminex, SearchLight and FAST Quant. J Immunol Methods 309:205–208

    Article  CAS  PubMed  Google Scholar 

  17. Morgan E, Varro R, Sepulveda H, Ember JA, Apgar J, Wilson J et al (2004) Cytometric bead array: a multiplexed assay platform with applications in various areas of biology. Clin Immunol 110:252–266

    Article  CAS  PubMed  Google Scholar 

  18. Dali H, Busnel O, Hoebeke J, Bi L, Decker P, Briand JP et al (2007) Heteroclitic properties of mixed alpha- and aza-beta3-peptides mimicking a supradominant CD4 T cell epitope presented by nucleosome. Mol Immunol 44:3024–3036

    Article  CAS  PubMed  Google Scholar 

  19. Mézière C, Stockl F, Batsford S, Vogt A, Muller S (1994) Antibodies to DNA, chromatin core particles and histones in mice with graft-versus-host disease and their involvement in glomerular injury. Clin Exp Immunol 98:287–294

    Article  PubMed Central  PubMed  Google Scholar 

  20. Monneaux F, Briand JP, Muller S (2000) B and T cell immune response to small nuclear ribonucleoprotein particles in lupus mice: autoreactive CD4(+) T cells recognize a T cell epitope located within the RNP80 motif of the 70K protein. Eur J Immunol 30:2191–2200

    Article  CAS  PubMed  Google Scholar 

  21. Nagata S, Suda T (1995) Fas and Fas ligand: lpr and gld mutations. Immunol Today 16:39–43

    Article  CAS  PubMed  Google Scholar 

  22. Cohen PL, Eisenberg RA (1991) Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu Rev Immunol 9:243–269

    Article  CAS  PubMed  Google Scholar 

  23. Theofilopoulos AN, Dixon FJ (1985) Murine models of systemic lupus erythematosus. Adv Immunol 37:269–390

    Article  CAS  PubMed  Google Scholar 

  24. Monneaux F, Lozano JM, Patarroyo ME, Briand JP, Muller S (2003) T cell recognition and therapeutic effect of a phosphorylated synthetic peptide of the 70K snRNP protein administered in MR/lpr mice. Eur J Immunol 33:287–296

    Article  CAS  PubMed  Google Scholar 

  25. Page N, Gros F, Schall N, Décossas M, Bagnard D, Briand JP et al (2011) HSC70 blockade by the therapeutic peptide P140 affects autophagic processes and endogenous MHCII presentation in murine lupus. Ann Rheum Dis 70:837–843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Fournel S, Neichel S, Dali H, Farci S, Maillère B, Briand JP et al (2003) CD4+ T cells from (New Zealand Black x New Zealand White) F1 lupus mice and normal mice immunized against apoptotic nucleosomes recognize similar Th cell epitopes in the C terminus of histone H3. J Immunol 171:636–644

    CAS  PubMed  Google Scholar 

  27. Hoffmann MH, Trembleau S, Muller S, Steiner G (2010) Nucleic acid-associated autoantigens: pathogenic involvement and therapeutic potential. J Autoimmun 34:J178–J206

    Article  CAS  PubMed  Google Scholar 

  28. Kaliyaperumal A, Michaels MA, Datta SK (1999) Antigen-specific therapy of murine lupus nephritis using nucleosomal peptides: tolerance spreading impairs pathogenic function of autoimmune T and B cells. J Immunol 162:5775–5783

    CAS  PubMed  Google Scholar 

  29. Suen JL, Chuang YH, Tsai BY, Yau PM, Chiang BL (2004) Treatment of murine lupus using nucleosomal T cell epitopes identified by bone marrow-derived dendritic cells. Arthritis Rheum 50:3250–3259

    Article  CAS  PubMed  Google Scholar 

  30. Dumortier H, Monneaux F, Jahn-Schmid B, Briand JP, Skriner K, Cohen PL et al (2000) B and T cell responses to the spliceosomal heterogeneous nuclear ribonucleoproteins A2 and B1 in normal and lupus mice. J Immunol 165:2297–2305

    CAS  PubMed  Google Scholar 

  31. Dieker JW, Fransen JH, Van Bavel CC, Briand JP, Jacobs CW, Muller S et al (2007) Apoptosis-induced acetylation of histones is pathogenic in systemic lupus erythematosus. Arthritis Rheum 56:1921–1933

    Article  CAS  PubMed  Google Scholar 

  32. Plaué S, Muller S, Van Regenmortel MH (1989) A branched, synthetic octapeptide of ubiquitinated histone H2A as target of autoantibodies. J Exp Med 169:1607–1617

    Article  PubMed  Google Scholar 

  33. Van Bavel CC, Dieker JW, Kroeze Y, Tamboer WP, Voll R, Muller S et al (2011) Apoptosis-induced histone H3 methylation is targeted by autoantibodies in systemic lupus erythematosus. Ann Rheum Dis 70:201–207

    Article  PubMed  Google Scholar 

  34. Dieker J, Muller S (2010) Epigenetic histone code and autoimmunity. Clin Rev Allergy Immunol 39:78–84

    Article  CAS  PubMed  Google Scholar 

  35. Woppmann A, Patschinsky T, Bringmann P, Godt F, Lührmann R (1990) Characterisation of human and murine snRNP proteins by two-dimensional gel electrophoresis and phosphopeptide analysis of U1-specific 70K protein variants. Nucleic Acids Res 18:4427–4438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Woppmann A, Will CL, Kornstadt U, Zuo P, Manley JL, Lührmann R (1993) Identification of an snRNP-associated kinase activity that phosphorylates arginine/serine rich domains typical of splicing factors. Nucleic Acids Res 21:2815–2822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Perry D, Sang A, Yin Y, Zheng YY, Morel L (2011) Murine models of systemic lupus erythematosus. J Biomed Biotechnol 2011: 271694

    Article  PubMed Central  PubMed  Google Scholar 

  38. Monneaux F, Dumortier H, Steiner G, Briand JP, Muller S (2001) Murine models of systemic lupus erythematosus: B and T cell responses to spliceosomal ribonucleoproteins in MRL/Fas(lpr) and (NZB x NZW)F(1) lupus mice. Int Immunol 13:1155–1163

    Article  CAS  PubMed  Google Scholar 

  39. Schroeder MA, Dipersio JF (2011) Mouse models of graft-versus-host disease: advances and limitations. Dis Model Mech 4:318–333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Rottman JB, Willis CR (2010) Mouse models of systemic lupus erythematosus reveal a complex pathogenesis. Vet Pathol 47:664–676

    Article  CAS  PubMed  Google Scholar 

  41. Dixon FJ (1981) Murine systemic lupus erythematosus. Immunol Today 2:8–9

    Article  Google Scholar 

  42. Guillet JG, Lai MZ, Briner TJ, Buus S, Sette A, Grey HM et al (1987) Immunological self, nonself discrimination. Science 235:865–870

    Article  CAS  PubMed  Google Scholar 

  43. Lai MZ, Ross DT, Guillet JG, Briner TJ, Gefter ML, Smith JA (1987) T lymphocyte response to bacteriophage lambda repressor cI protein. Recognition of the same peptide presented by Ia molecules of different haplotypes. J Immunol 139:3973–3980

    CAS  PubMed  Google Scholar 

  44. Mézière C, Viguier M, Dumortier H, Lo-Man R, Leclerc C, Guillet JG et al (1997) In vivo T helper cell response to retro-inverso peptidomimetics. J Immunol 159:3230–3237

    PubMed  Google Scholar 

  45. Ngo-Giang-Huong N, Kayibanda M, Deprez B, Levy JP, Guillet JG, Tilkin AF (1995) Mutations in residue 61 of H-Ras p21 protein influence MHC class II presentation. Int Immunol 7:269–275

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in the authors’ laboratory is financially supported by the French Centre National de la Recherche Scientifique, the Laboratory of Excellence Medalis (ANR-10-LABX-0034), Initiative of Excellence (IdEx), Strasbourg University, Région Alsace, and ImmuPharma France.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Briand, JP., Schall, N., Muller, S. (2014). Generation of Self-Peptides to Treat Systemic Lupus Erythematosus. In: Eggleton, P., Ward, F. (eds) Systemic Lupus Erythematosus. Methods in Molecular Biology, vol 1134. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0326-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0326-9_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0325-2

  • Online ISBN: 978-1-4939-0326-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics