Skip to main content

Assays to Examine Endothelial Cell Migration, Tube Formation, and Gene Expression Profiles

  • Protocol
Cerebral Angiogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1135))

Abstract

Common methods for studying angiogenesis in vitro include the tube formation assay, the migration assay, and the study of the endothelial genome. The formation of capillary-like tubes in vitro on basement membrane matrix mimics many steps of the angiogenesis process in vivo and is used widely as a screening test for angiogenic or antiangiogenic factors. Other assays related to the study of angiogenesis include the cell migration assay, the study of gene expression changes during the process of angiogenesis, and the study of endothelial-derived microparticles. Protocols for these procedures will be described here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Montesano R, Orci L (1985) Tumor-promoting phorbol esters induce angiogenesis in vitro. Cell 42(2):469–477

    Article  CAS  PubMed  Google Scholar 

  2. Koh W, Stratman AN, Sacharidou A, Davis GE (2008) In vitro three dimensional collagen matrix models of endothelial lumen formation during vasculogenesis and angiogenesis. Methods Enzymol 443:83–101

    Article  CAS  PubMed  Google Scholar 

  3. Kubota Y, Kleinman HK, Martin GR, Lawley TJ (1988) Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol 107(4):1589–1598

    Article  CAS  PubMed  Google Scholar 

  4. Arnaoutova I, George J, Kleinman HK, Benton G (2009) The endothelial cell tube formation assay on basement membrane turns 20: state of the science and the art. Angiogenesis 12(3):267–274

    Article  PubMed  Google Scholar 

  5. Gallo A, Tandon M, Alevizos I, Illei GG (2012) The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One 7(3):e30679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Le Bihan MC, Bigot A, Jensen SS, Dennis JL, Rogowska-Wrzesinska A, Laine J, Gache V, Furling D, Jensen ON, Voit T, Mouly V, Coulton GR, Butler-Browne G (2012) In-depth analysis of the secretome identifies three major independent secretory pathways in differentiating human myoblasts. J Proteomics 77:344–356

    Article  PubMed  Google Scholar 

  7. Lai CP, Breakefield XO (2012) Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol 3:228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Kim HK, Song KS, Chung JH, Lee KR, Lee SN (2004) Platelet microparticles induce angiogenesis in vitro. Br J Haematol 124(3):376–384

    Article  PubMed  Google Scholar 

  10. Shai E, Varon D (2011) Development, cell differentiation, angiogenesis–microparticles and their roles in angiogenesis. Arterioscler Thromb Vasc Biol 31(1):10–14

    Article  CAS  PubMed  Google Scholar 

  11. Taraboletti G, D'Ascenzo S, Borsotti P, Giavazzi R, Pavan A, Dolo V (2002) Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells. Am J Pathol 160(2):673–680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, Biancone L, Bruno S, Bussolati B, Camussi G (2007) Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110(7):2440–2448

    Article  CAS  PubMed  Google Scholar 

  13. Xing C, Lee S, Kim WJ, Wang H, Yang YG, Ning M, Wang X, Lo EH (2009) Neurovascular effects of CD47 signaling: promotion of cell death, inflammation, and suppression of angiogenesis in brain endothelial cells in vitro. J Neurosci Res 87(11):2571–2577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Guo S, Zhou Y, Xing C, Lok J, Som AT, Ning M, Ji X, Lo EH (2012) The vasculome of the mouse brain. PLoS One 7(12):e52665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Guo, S. et al. (2014). Assays to Examine Endothelial Cell Migration, Tube Formation, and Gene Expression Profiles. In: Milner, R. (eds) Cerebral Angiogenesis. Methods in Molecular Biology, vol 1135. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0320-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0320-7_32

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0319-1

  • Online ISBN: 978-1-4939-0320-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics