Skip to main content

Localization of miRNAs by In Situ Hybridization in Plants Using Conventional Oligonucleotide Probes

  • Protocol
  • First Online:
Plant Epigenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1456))

Abstract

Among the epigenetic mechanisms studied with a greater interest in the last decade are the microRNAs (miRNAs). These small noncoding RNA sequences that are approximately 17–22 nucleotides in length play an essential role in many biological processes of various organisms, including plants. The analysis of spatiotemporal expression of miRNAs provides a better understanding of the role of these small molecules in plant development, cell differentiation, and other processes; but such analysis is also an important method for the validation of biological functions. In this work, we describe the optimization of an efficient protocol for the spatiotemporal analysis of miRNA by in situ hybridization using different plant tissues embedded in paraffin. Instead of LNA-modified probes that are typically used for this work, we use conventional oligonucleotide probes that yield a high specificity and clean distribution of miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen X (2005) MicroRNA biogenesis and function in plants. FEBS Lett 579:5923–5931

    Article  CAS  PubMed  Google Scholar 

  2. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Axtell MJ (2013) Classification and comparison of small RNAs from plants. Ann Rev Plant Biol 64:137–159

    Article  CAS  Google Scholar 

  4. Rhoades J, Bartel DP, Bartel B (2006) miRNAs and their regulatory roles in plants. Ann Rev Plant Physiol 57:19–53

    Google Scholar 

  5. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190

    Article  CAS  PubMed  Google Scholar 

  6. Xie Z, Khanna K, Ruan S (2010) Expression of microRNAs and its regulation in plants. Sem Cell Dev Biol 21:790–797

    Article  CAS  Google Scholar 

  7. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  8. Lin Y, Lai Z (2013) Comparative analysis reveals dynamic changes in miRNAs and their targets and expression during somatic embryogenesis in Longan (Dimocarpus longan Lour). PLoS One 8, e60337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu X, Huang J, Wang Y, Khanna K, Xie Z, Owen HA, Zhao D (2010) The role of floral organs in carpels, an Arabidopsis loss-of-function mutation in MicroRNA160a, in organogenesis and the mechanism regulating its expression. Plant J 62:416–428

    Article  PubMed  Google Scholar 

  10. Wu XM, Liu M, Ge X, Xu Q, Guo W (2011) Stage and tissue-specific modulation of ten conserved miRNAs and their targets during somatic embryogenesis of Valencia sweet orange. Planta 233:495–505

    Article  CAS  PubMed  Google Scholar 

  11. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157

    Article  CAS  PubMed  Google Scholar 

  12. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:154–158

    Article  Google Scholar 

  13. Zhang Z, Yu J, Li D, Liu F, Zhou X, Wang T, Ling Y, Su Z (2010) PMRD: plant microRNA database. Nucleic Acids Res 38:D806–D881

    Article  CAS  PubMed  Google Scholar 

  14. Sun X, Dong B, Yin L, Zhang R, Du W, Liu D, Shi N, Li A, Liang Y, Mao L (2013) PMTED: a plant microRNA target expression database. BMC Bioinformatics 14:174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z (2004) Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1:155–161

    Article  CAS  PubMed  Google Scholar 

  16. Eldem V, Okay S, Ünver T (2013) Plant microRNAs: new players in functional genomics. Turk J Agric For 37:21

    Google Scholar 

  17. Unver T, Namuth-Covert D, Budak H (2009) Review of current methodological approaches for characterizing microRNAs in plants. Inter J Plant Gen 1:1–11

    Google Scholar 

  18. Tran N (2009) Fast and simple micro-RNA northern blots. Biochem Insights 2:1–3

    CAS  Google Scholar 

  19. Alastair W, Hye-Jin L, Wark D (2008) Multiplexed detection methods for profiling microRNA expression in biological samples. Angew Chem Int Ed 47:644–652

    Article  Google Scholar 

  20. Kidner C, Timmermans M (2006) In situ hybridization as a tool to study the role of microRNAs in plant development. In: Ying SY (ed) MicroRNA protocols. Humana Press, Totowa, pp 159–179

    Chapter  Google Scholar 

  21. Song R, Ro S, Yan W (2010) In situ hybridization detection of microRNAs. Methods Mol Biol 628:287–294

    Google Scholar 

  22. Javelle M, Timmermans MC (2012) In situ localization of small RNAs in plants by using LNA probes. Nat Protocols 7:533–544

    Article  CAS  PubMed  Google Scholar 

  23. Nuovo GJ (2008) In situ detection of precursor and mature microRNAs in paraffin embedded, formalin fixed tissues and cell preparations. Methods 44:39–46

    Article  CAS  PubMed  Google Scholar 

  24. Quiroz-Figueroa FR, Monforte-González M, Galaz-Avalos RM, Loyola-Vargas VM (2006) Direct somatic embryogenesis in Coffea canephora. In: Loyola-Vargas VM, Vázquez-Flota FA (eds) Plant cell culture protocols. Humana Press, Totowa, NJ, pp 111–117

    Google Scholar 

Download references

Acknowledgement

This work was supported by grants from CONSEJO NACIONAL DE CIENCIA Y TECNOLOGÍA (CONACYT) to C.D. (178149), CONACYT-scholarship to S.H.C. (271240), and Cátedras-CONACYT ICC1 to G.N.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clelia De-la-Peña .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hernández-Castellano, S., Nic-Can, G.I., De-la-Peña, C. (2017). Localization of miRNAs by In Situ Hybridization in Plants Using Conventional Oligonucleotide Probes. In: Kovalchuk, I. (eds) Plant Epigenetics. Methods in Molecular Biology, vol 1456. Humana Press, Boston, MA. https://doi.org/10.1007/978-1-4899-7708-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7708-3_4

  • Published:

  • Publisher Name: Humana Press, Boston, MA

  • Print ISBN: 978-1-4899-7706-9

  • Online ISBN: 978-1-4899-7708-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics