Skip to main content

Bioinformatics Analysis of Small RNA Transcriptomes: The Detailed Workflow

  • Protocol
  • First Online:
Plant Epigenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1456))

Abstract

Next-generation sequencing became a method of choice for the investigation of small RNA transcriptomes in plants and animals. Although a technical side of sequencing itself is becoming routine, and experimental costs are affordable, data analysis still remains a challenge, especially for researchers with limited computational experience. Here, we present a detailed description of a computational workflow designed to take raw sequencing reads as input, to obtain small RNA predictions, and to detect the differentially expressed microRNAs as a result. The exact commands and pieces of code are provided and hopefully can be adapted and used by other researchers to facilitate the study of small RNA regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:1, Gener. Seq. Data Anal

    Article  Google Scholar 

  2. Axtell MJ (2013) Classification and Comparison of Small RNAs from Plants. Annu Rev Plant Biol 64:137–159

    Article  CAS  PubMed  Google Scholar 

  3. Calarco JP, Borges F, Donoghue MTA, Van Ex F, Jullien PE, Lopes T, Gardner R, Berger F, Feijó JA, Becker JD, Martienssen RA (2012) Reprogramming of DNA Methylation in Pollen Guides Epigenetic Inheritance via Small RNA. Cell 151:194–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lilljebjorn H, Rissler M, Lassen C, Heldrup J, Behrendtz M, Mitelman F, Johansson B, Fioretos T (2012) Whole-exome sequencing of pediatric acute lymphoblastic leukemia. Leukemia 26:1602–1607

    Article  CAS  PubMed  Google Scholar 

  5. Carroll TS, Liang Z, Salama R, Stark R, de Santiago I (2014) Impact of artifact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data. Front Genet 5:75

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lindner R, Friedel CC (2012) A Comprehensive Evaluation of Alignment Algorithms in the Context of RNA-Seq. PLoS One 7, e52403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yang X, Li L (2011) miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics 27:2614–2615

    CAS  PubMed  Google Scholar 

  9. Xie F, Xiao P, Chen D, Xu L, Zhang B (2012) miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol 80:75–84

    CAS  Google Scholar 

  10. Moxon S, Schwach F, Dalmay T, MacLean D, Studholme DJ, Moulton V (2008) A toolkit for analysing large-scale plant small RNA datasets. Bioinformatics 24:2252–2253

    Article  CAS  PubMed  Google Scholar 

  11. Axtell MJ (2013) ShortStack: Comprehensive annotation and quantification of small RNA genes. RNA 19:740–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. An J, Lai J, Lehman ML, Nelson CC (2013) miRDeep*: an integrated application tool for miRNA identification from RNA sequencing data. Nucleic Acids Res 41:727–737

    Article  CAS  PubMed  Google Scholar 

  13. Lorenz R, Bernhart SH, HönerzuSiederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA Package 2.0. Algor Mol Biol 6:26

    Article  Google Scholar 

  14. Bologna NG, Schapire AL, Zhai J, Chorostecki U, Boisbouvier J, Meyers BC, Palatnik JF (2013) Multiple RNA recognition patterns during microRNA biogenesis in plants. Genome Res 23:1675–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-Directed Phasing during Trans-Acting siRNA Biogenesis in Plants. Cell 121:207–221

    Article  CAS  PubMed  Google Scholar 

  16. Xie Z, Allen E, Wilken A, Carrington JC (2005) DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc Natl Acad Sci U S A 102:12984–12989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen H-M, Li Y-H, Wu S-H (2007) Bioinformatic prediction and experimental validation of a microRNA-directed tandem trans-acting siRNA cascade in Arabidopsis. Proc Natl Acad Sci U S A 104:3318–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stocks MB, Moxon S, Mapleson D, Woolfenden HC, Mohorianu I, Folkes L, Schwach F, Dalmay T, Moulton V (2012) The UEA sRNA workbench: a suite of tools for analysing and visualizing next generation sequencing microRNA and small RNA datasets. Bioinformatics 28:2059–2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., 1000 Genome Project Data Processing Subgroup (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079

    Article  Google Scholar 

  22. Mochida K, Shinozaki K (2010) Genomics and Bioinformatics Resources for Crop Improvement. Plant Cell Physiol 51:497–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Martinez M (2013) From plant genomes to protein families: computational tools. Comput Struct Biotechnol J 8, e201307001

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yu X, Wang H, Lu Y, de Ruiter M, Cariaso M, Prins M, van Tunen A, He Y (2012) Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa. J Exp Bot 63:1025–1038

    Article  CAS  PubMed  Google Scholar 

  25. Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, Eddy SR, Gardner PP, Bateman A (2013) Rfam 11.0: 10 years of RNA families. Nucleic Acids Res 41:D226–D232

    Article  CAS  PubMed  Google Scholar 

  26. Cheng F, Liu S, Wu J, Fang L, Sun S, Liu B, Li P, Hua W, Wang X (2011) BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biol 11:136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cordero F, Beccuti M, Arigoni M, Donatelli S, Calogero RA (2012) Optimizing a Massive Parallel Sequencing Workflow for Quantitative miRNA Expression Analysis. PLoS One 7, e31630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Emde A-K, Grunert M, Weese D, Reinert K, Sperling SR (2010) MicroRazerS: rapid alignment of small RNA reads. Bioinformatics 26:123–124

    Article  CAS  PubMed  Google Scholar 

  29. Rumble SM, Lacroute P, Dalca AV, Fiume M, Sidow A, Brudno M (2009) SHRiMP: Accurate Mapping of Short Color-space Reads. PLoS Comput Biol 5, e1000386

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hardcastle TJ, Kelly KA (2010) baySeq: Empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 11:422

    Article  PubMed  PubMed Central  Google Scholar 

  31. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73

    Article  CAS  PubMed  Google Scholar 

  33. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  34. Kauffmann A, Gentleman R, Huber W (2009) arrayQualityMetrics—a bioconductor package for quality assessment of microarray data. Bioinformatics 25:415–416

    Article  CAS  PubMed  Google Scholar 

  35. Wickham H (2009) ggplot2: elegant graphics for data analysis., Springer New York

    Book  Google Scholar 

  36. Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  37. Bourgon R, Gentleman R, Huber W (2010) Independent filtering increases detection power for high-throughput experiments. Proc Natl Acad Sci U S A 107:9546–9551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinforma Oxf Engl 25:1105–1111

    Article  CAS  Google Scholar 

  40. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slava Ilnytskyy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ilnytskyy, S., Bilichak, A. (2017). Bioinformatics Analysis of Small RNA Transcriptomes: The Detailed Workflow. In: Kovalchuk, I. (eds) Plant Epigenetics. Methods in Molecular Biology, vol 1456. Humana Press, Boston, MA. https://doi.org/10.1007/978-1-4899-7708-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7708-3_16

  • Published:

  • Publisher Name: Humana Press, Boston, MA

  • Print ISBN: 978-1-4899-7706-9

  • Online ISBN: 978-1-4899-7708-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics