Skip to main content

Small RNA Library Preparation and Illumina Sequencing in Plants

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1456))

Abstract

The discovery of small RNAs in plants and animals almost two decades ago attracted a significant interest towards epigenetic regulation of gene expression and the practical implementation of the gained knowledge in applied studies. New and sometimes unexpected functions have been ascribed to sRNAs almost every couple of years since their discovery, hence indicating that the complete role of sRNAs in plant and animal physiology is still barely understood. Next-generation sequencing technologies allow to generate high-resolution profiles of sRNAs for the consequent analysis and possibly to discover novel functions of sRNAs. In this chapter, we provide brief guidelines for sRNA library preparation in plants and a practical approach that can be implemented to overcome possible difficulties with sequencing library generation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Axtell MJ (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64:137–159

    Article  CAS  PubMed  Google Scholar 

  2. Slotkin RK et al (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136(3):461–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bourc’his D, Voinnet O (2010) A small-RNA perspective on gametogenesis, fertilization, and early zygotic development. Science 330(6004):617–622

    Article  PubMed  Google Scholar 

  4. Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12(7):301–309

    Article  CAS  PubMed  Google Scholar 

  5. Seo JK et al (2013) Contribution of small RNA pathway components in plant immunity. Mol Plant Microbe Interact 26(6):617–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jin H (2008) Endogenous small RNAs and antibacterial immunity in plants. FEBS Lett 582(18):2679–2684

    Article  CAS  PubMed  Google Scholar 

  7. Wei W et al (2012) A role for small RNAs in DNA double-strand break repair. Cell 149(1):101–112

    Article  CAS  PubMed  Google Scholar 

  8. Gao M et al (2014) Ago2 facilitates Rad51 recruitment and DNA double-strand break repair by homologous recombination. Cell Res 24(5):532–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li LC et al (2006) Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci U S A 103(46):17337–17342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Janowski BA et al (2007) Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol 3(3):166–173

    Article  CAS  PubMed  Google Scholar 

  12. Huang V et al (2010) RNAa is conserved in mammalian cells. PLoS One 5(1):e8848

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shibuya K, Fukushima S, Takatsuji H (2009) RNA-directed DNA methylation induces transcriptional activation in plants. Proc Natl Acad Sci U S A 106(5):1660–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wojtasik W et al (2014) Oligonucleotide treatment causes flax beta-glucanase up-regulation via changes in gene-body methylation. BMC Plant Biol 14:261

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bilichak A et al (2015) The elucidation of stress memory inheritance in Brassica rapa plants. Front Plant Sci 6:5

    PubMed  PubMed Central  Google Scholar 

  16. Saze H et al (2012) DNA methylation in plants: relationship to small RNAs and histone modifications, and functions in transposon inactivation. Plant Cell Physiol 53(5):766–784

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of Alberta Innovates Biosolutions and Natural Sciences and Engineering Research Council of Canada grants to Igor Kovalchuk and Alberta Innovates Technology Futures for scholarship to Andriy Bilichak. We thank Valentina Titova for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Kovalchuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bilichak, A., Golubov, A., Kovalchuk, I. (2017). Small RNA Library Preparation and Illumina Sequencing in Plants. In: Kovalchuk, I. (eds) Plant Epigenetics. Methods in Molecular Biology, vol 1456. Humana Press, Boston, MA. https://doi.org/10.1007/978-1-4899-7708-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7708-3_15

  • Published:

  • Publisher Name: Humana Press, Boston, MA

  • Print ISBN: 978-1-4899-7706-9

  • Online ISBN: 978-1-4899-7708-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics