Skip to main content

The Impact of Non-electrical Factors on Electrical Gene Transfer

  • Protocol
  • First Online:
Electroporation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1121))

Abstract

Electrical pulses directly and effectively boost both in vitro and in vivo gene transfer, but this process is greatly affected by non-electrical factors that exist during electroporation. These factors include, but are not limited to, the types of cells or tissues used, property of DNA, DNA formulation, and expressed protein. In this mini-review, we only describe and discuss a summary of DNA properties and selected DNA formulations on gene transfer via electroporation. The properties of DNA were selected for review because a substantial amount of remarkable work has been performed during the past few years but has received less notice than other works, although DNA properties appear to be critical for boosting electroporation delivery. The selected formulations will be covered in this mini-review because we are only interested in the simple formulations that could be used for cell or gene therapy via electroporation. Plus, there was an extensive review of DNA formulations in the first edition of this book. The formulations discussed in this mini-review represent novel developments in recent years and may impact electroporation significantly. These advancements in DNA formulations could prove to be important for gene delivery and disease treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li S (2004) Electroporation gene therapy: new developments in vivo and in vitro. Curr Gene Ther 4:309–316

    Article  CAS  PubMed  Google Scholar 

  2. Mir LM, Bureau MF, Gehl J et al (1999) High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci U S A 96:4262–4267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Li S, Zhang X, Xia X et al (2001) Intramuscular electroporation delivery of ifn-alpha gene therapy for inhibition of tumor growth located at a distant site. Gene Ther 8:400–407

    Article  CAS  PubMed  Google Scholar 

  4. Aihara H, Miyazaki J (1998) Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 16:867–870

    Article  CAS  PubMed  Google Scholar 

  5. Heller LC, Coppola D (2002) Electrically mediated delivery of vector plasmid DNA elicits an antitumor effect. Gene Ther 9:1321–1325

    Article  CAS  PubMed  Google Scholar 

  6. Maruyama H, Ataka K, Higuchi N, Sakamoto F, Gejyo F, Miyazaki J (2001) Skin-targeted gene transfer using in vivo electroporation. Gene Ther 8:1808–1812

    Article  CAS  PubMed  Google Scholar 

  7. Nishi T, Yoshizato K, Yamashiro S et al (1996) High-efficiency in vivo gene transfer using intraarterial plasmid DNA injection following in vivo electroporation. Cancer Res 56:1050–1055

    CAS  PubMed  Google Scholar 

  8. Draghia-Akli R, Khan AS, Cummings KK, Parghi D, Carpenter RH, Brown PA (2002) Electrical enhancement of formulated plasmid delivery in animals. Technol Cancer Res Treat 1:365–372

    CAS  PubMed  Google Scholar 

  9. Vierra DA, Irvine SQ (2012) Optimized conditions for transgenesis of the ascidian ciona using square wave electroporation. Dev Genes Evol 222:55–61

    Article  CAS  PubMed  Google Scholar 

  10. Vry JD, Martinez-Martinez P, Losen M et al (2010) Low current-driven micro-electroporation allows efficient in vivo delivery of nonviral DNA into the adult mouse brain. Mol Ther 18:1182–1191

    Article  Google Scholar 

  11. Pavlin M, Flisar K, Kanduser M (2010) The role of electrophoresis in gene electrotransfer. J Membr Biol 236:75–79

    Article  CAS  PubMed  Google Scholar 

  12. Bureau MF, Gehl J, Deleuze V, Mir LM, Scherman D (2000) Importance of association between permeabilization and electrophoretic forces for intramuscular DNA electrotransfer. Biochim Biophys Acta 1474:353–359

    Article  CAS  PubMed  Google Scholar 

  13. Andre FM, Gehl J, Sersa G et al (2008) Efficiency of high- and low-voltage pulse combinations for gene electrotransfer in muscle, liver, tumor, and skin. Hum Gene Ther 19:1261–1271

    Article  CAS  PubMed  Google Scholar 

  14. Nicol F, Wong M, MacLaughlin FC et al (2002) Poly-l-glutamate, an anionic polymer, enhances transgene expression for plasmids delivered by intramuscular injection with in vivo electroporation. Gene Ther 9:1351–1358

    Article  CAS  PubMed  Google Scholar 

  15. Fewell JG, MacLaughlin F, Mehta V et al (2001) Gene therapy for the treatment of hemophilia b using pinc-formulated plasmid delivered to muscle with electroporation. Mol Ther 3:574–583

    Article  CAS  PubMed  Google Scholar 

  16. Flanagan M, Gimble JM, Yu G et al (2011) Competitive electroporation formulation for cell therapy. Cancer Gene Ther 18:579–586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Barbon CM, Baker L, Lajoie C, Ramstedt U, Hedley ML, Luby TM (2010) In vivo electroporation enhances the potency of poly-lactide co-glycolide (plg) plasmid DNA immunization. Vaccine 28:7852–7864

    Article  CAS  PubMed  Google Scholar 

  18. Gopalakrishnan AM, Kundu AK, Mandal TK, Kumar N (2013) Novel nanosomes for gene delivery to plasmodium falciparum-infected red blood cells. Sci Rep 3:1534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Mignet N, Vandermeulen G, Pembouong G et al (2010) Cationic and anionic lipoplexes inhibit gene transfection by electroporation in vivo. J Gene Med 12:491–500

    Article  CAS  PubMed  Google Scholar 

  20. Flanagan M, Gimble JM, Yu G, Xia X, Bunnell BA, Li S (2012) Competitive DNA transfection formulation via electroporation for human adipose stem cells and mesenchymal stem cells. Biol Proced Online 14:7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lee MJ, Cho SS, Jang HS et al (2002) Optimal salt concentration of vehicle for plasmid DNA enhances gene transfer mediated by electroporation. Exp Mol Med 34:265–272

    Article  CAS  PubMed  Google Scholar 

  22. Ribeiro S, Mairhofer J, Madeira C et al (2012) Plasmid DNA size does affect nonviral gene delivery efficiency in stem cells. Cell Reprogram 14:130–137

    CAS  PubMed  Google Scholar 

  23. Spath K, Heinl S, Grabherr R (2012) Direct cloning in lactobacillus plantarum: electroporation with non-methylated plasmid DNA enhances transformation efficiency and makes shuttle vectors obsolete. Microb Cell Fact 11:141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lin SY, Yeh KT, Chen WT et al (2004) Promoter cpg methylation of tumor suppressor genes in colorectal cancer and its relationship to clinical features. Oncol Rep 11:341–348

    CAS  PubMed  Google Scholar 

  25. Chen Y, Dhupelia A, Schoenherr CJ (2009) The igf2/h19 imprinting control region exhibits sequence-specific and cell-type-dependent DNA methylation-mediated repression. Nucleic Acids Res 37:793–803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Arakawa T, Ohta T, Abiko Y, Okayama M, Mizoguchi I, Takuma T (2011) A polymerase chain reaction-based method for constructing a linear vector with site-specific DNA methylation. Anal Biochem 416:211–217

    Article  CAS  PubMed  Google Scholar 

  27. Lu J, Zhang F, Kay MA (2013) A mini-intronic plasmid (mip): a novel robust transgene expression vector in vivo and in vitro. Mol Ther 21:954–963

    Article  CAS  PubMed  Google Scholar 

  28. Gao L, Xie L, Long X et al (2013) Efficacy of mri visible iron oxide nanoparticles in delivering minicircle DNA into liver via intrabiliary infusion. Biomaterials 34:3688–3696

    Article  CAS  PubMed  Google Scholar 

  29. Kobelt D, Schleef M, Schmeer M, Aumann J, Schlag PM, Walther W (2013) Performance of high quality minicircle DNA for in vitro and in vivo gene transfer. Mol Biotechnol 53:80–89

    Article  CAS  PubMed  Google Scholar 

  30. Peng J, Zhao Y, Mai J, Guo W, Xu Y (2012) Short noncoding DNA fragment improve efficiencies of in vivo electroporation-mediated gene transfer. J Gene Med 14:563–569

    Article  CAS  PubMed  Google Scholar 

  31. Cutrera J, Dibra D, Xia X, Li S (2010) Enhancement of reporter gene detection sensitivity by insertion of specific mini-peptide-coding sequences. Cancer Gene Ther 17:131–140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Miller AM, Dean DA (2009) Tissue-specific and transcription factor-mediated nuclear entry of DNA. Adv Drug Deliv Rev 61:603–613

    Article  CAS  PubMed  Google Scholar 

  33. Lee ST, Jang JH, Cheong JW et al (2002) Treatment of high-risk acute myelogenous leukaemia by myeloablative chemoradiotherapy followed by co-infusion of t cell-depleted haematopoietic stem cells and culture-expanded marrow mesenchymal stem cells from a related donor with one fully mismatched human leucocyte antigen haplotype. Br J Haematol 118:1128–1131

    Article  PubMed  Google Scholar 

  34. Prata Kde L, Orellana MD, De Santis GC et al (2010) Effects of high-dose chemotherapy on bone marrow multipotent mesenchymal stromal cells isolated from lymphoma patients. Exp Hematol 38(292–300):e294

    Google Scholar 

  35. Wild JM, Krutzfeldt NO (2010) Neocortical-like organization of avian auditory ‘cortex’. Commentary on Wang Y, Brzozowska-Prechtl A, Karten HJ (2010): Laminar and columnar auditory cortex in avian brain. Proc Natl Acad Sci USA 107:12676–12681. Brain Behav Evol 76:89–92

    Article  PubMed  Google Scholar 

  36. Katz AJ, Llull R, Hedrick MH, Futrell JW (1999) Emerging approaches to the tissue engineering of fat. Clin Plast Surg 26:587–603, viii

    CAS  PubMed  Google Scholar 

  37. Gimble J, Guilak F (2003) Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5:362–369

    Article  PubMed  Google Scholar 

  38. Morizono K, De Ugarte DA, Zhu M et al (2003) Multilineage cells from adipose tissue as gene delivery vehicles. Hum Gene Ther 14:59–66

    Article  CAS  PubMed  Google Scholar 

  39. Josiah DT, Zhu D, Dreher F, Olson J, McFadden G, Caldas H (2010) Adipose-derived stem cells as therapeutic delivery vehicles of an oncolytic virus for glioblastoma. Mol Ther 18:377–385

    Article  CAS  PubMed  Google Scholar 

  40. Li S (2008) Electroporation gene therapy. Preface. Meth Mol Biol 423:v–vii

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hu, J., Cutrera, J., Li, S. (2014). The Impact of Non-electrical Factors on Electrical Gene Transfer. In: Li, S., Cutrera, J., Heller, R., Teissie, J. (eds) Electroporation Protocols. Methods in Molecular Biology, vol 1121. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-9632-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9632-8_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-9631-1

  • Online ISBN: 978-1-4614-9632-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics